Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000044cd |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/9718 |
Resumo: | This thesis deals with two distinct problems. Namely, we study [(P1)] Rigidity of metric spaces that support CKN inequality; [(P2)] Gradient Yamabe solitons on top of warped product manifolds B x f F. For the first problem, we prove that the metric measure spaces that support the CKN inequality have n-dimensional volume growth, that is, there exists a universal constant C 0gt; 0 such that, m(B x (ρ)) ≥ C 0 ρ n , ∀x ∈ M, ρ gt; 0. As application, some rigidity theorems are obtained in the following spaces: Riemannian manifolds, Finsler manifolds and Alexandrov spaces. For the second problem, taking a gradient Yamabe soliton (B x f F, g, h, ρ), we obtain triviality results for h and f by means of some hypotheses on the base B. Furthermore, under a hypothesis involving the Ricci curvature of the base Ric gB , we prove estimates for h, f and for scalar curvature scal g , in addition, by means of a warping gradient estimates, we present a beautiful obstruction in the construction of gradient Yamabe solitons on warped product manifolds. Finally, by making use of invariant solution techniques, we classify all steady gradient Yamabe solitons with a conformally flat base that is invariant by the action of a codimension 1 translation group. |
id |
UFG-2_83c2e506e62b3f554c6bdae9853bba7c |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9718 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Adriano, Levi Rosahttp://lattes.cnpq.br/3206466156270217Adriano, Levi RosaSilva, Edcarlos Domingos daPina, Romildo da SilvaSousa, Paulo Alexandre AraújoRibeiro Junior, Ernani de Sousahttp://lattes.cnpq.br/3530744794583222Tokura, Willian Isao2019-06-18T15:47:14Z2019-05-31TOKURA, W. I. Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente. 2019. 108 f Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9718ark:/38995/00130000044cdThis thesis deals with two distinct problems. Namely, we study [(P1)] Rigidity of metric spaces that support CKN inequality; [(P2)] Gradient Yamabe solitons on top of warped product manifolds B x f F. For the first problem, we prove that the metric measure spaces that support the CKN inequality have n-dimensional volume growth, that is, there exists a universal constant C 0gt; 0 such that, m(B x (ρ)) ≥ C 0 ρ n , ∀x ∈ M, ρ gt; 0. As application, some rigidity theorems are obtained in the following spaces: Riemannian manifolds, Finsler manifolds and Alexandrov spaces. For the second problem, taking a gradient Yamabe soliton (B x f F, g, h, ρ), we obtain triviality results for h and f by means of some hypotheses on the base B. Furthermore, under a hypothesis involving the Ricci curvature of the base Ric gB , we prove estimates for h, f and for scalar curvature scal g , in addition, by means of a warping gradient estimates, we present a beautiful obstruction in the construction of gradient Yamabe solitons on warped product manifolds. Finally, by making use of invariant solution techniques, we classify all steady gradient Yamabe solitons with a conformally flat base that is invariant by the action of a codimension 1 translation group.Esta tese trata de dois problemas distintos. A saber, estudamos (P1) Rigidez de espaços métricos que suportam a desigualdade de CKN; (P2) Solitons de Yamabe gradiente com estrutura de produto torcido B ×f F. Para o primeiro problema, provamos que os espaços métricos com medida que suportam a desigualdade de CKN tem crescimento de volume n-dimensional, isto ´e, existe uma constante universal C0 > 0 tal que, m(Bx(ρ)) ≥ C0ρn, ∀x ∈ M, ρ > 0. Como aplica¸c˜ao, obtemos Teoremas de Rigidez nos seguintes espa¸cos: Variedades Riemannianas, Variedades de Finsler e Espaços de Alexandrov. Para o segundo problema, considerando um soliton de Yamabe gradiente (B ×f F, g, h, ρ), obtemos resultados de trivializa¸c˜ao para h e f assumindo hipóteses sobre B. Al´em disso, sob uma hipótese envolvendo a curvatura de Ricci da base RicgB , provamos estimativas para h, f e para curvatura escalar scalg, ademais, no caso particular da função torção, apresentamos uma bela obstrução na construção dos solitons de Yamabe produto torcido. Por fim, utilizando as técnicas de soluções invariantes, classificamos os solitons de Yamabe gradientes com base conformemente plana steady que são invariantes pela ação do grupo de translações de codimensão 1.Submitted by Ana Caroline Costa (ana_caroline212@hotmail.com) on 2019-06-17T17:45:40Z No. of bitstreams: 2 Tese - Willian Isao Tokura - 2019.pdf: 4014271 bytes, checksum: 1bf854cfa67742f6735a9183006f6a07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-06-18T15:47:14Z (GMT) No. of bitstreams: 2 Tese - Willian Isao Tokura - 2019.pdf: 4014271 bytes, checksum: 1bf854cfa67742f6735a9183006f6a07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-06-18T15:47:14Z (GMT). No. of bitstreams: 2 Tese - Willian Isao Tokura - 2019.pdf: 4014271 bytes, checksum: 1bf854cfa67742f6735a9183006f6a07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-05-31Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDesigualdade de Caffarelli-Kohn-Nirenberg (CKN)RigidezSolitons de Yamabe gradienteProduto torcidoCurvatura escalarEstimativa de gradienteCaffarelli-Kohn-Nirenberg inequalityRigidityGradient Yamabe solitonsWarped productScalar curvatureGradient estimatesCIENCIAS EXATAS E DA TERRA::MATEMATICADesigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradienteThe Caffarelli-Kohn-Nirenberg inequality and gradient Yamabe solitonsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/3d131725-1e04-4963-9d92-bfb7245b1528/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/c5105c2c-271c-43f4-b5a6-038fe71d60f8/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/071af866-7e26-4539-998c-ceb8f5767f1c/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/28ec66f0-c866-4919-b02f-b3a14b9e118d/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Willian Isao Tokura - 2019.pdfTese - Willian Isao Tokura - 2019.pdfapplication/pdf4014271http://repositorio.bc.ufg.br/tede/bitstreams/7cc39778-5425-488c-8730-120cba82f9f3/download1bf854cfa67742f6735a9183006f6a07MD55tede/97182019-06-18 12:47:14.818http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9718http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-06-18T15:47:14Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente |
dc.title.alternative.eng.fl_str_mv |
The Caffarelli-Kohn-Nirenberg inequality and gradient Yamabe solitons |
title |
Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente |
spellingShingle |
Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente Tokura, Willian Isao Desigualdade de Caffarelli-Kohn-Nirenberg (CKN) Rigidez Solitons de Yamabe gradiente Produto torcido Curvatura escalar Estimativa de gradiente Caffarelli-Kohn-Nirenberg inequality Rigidity Gradient Yamabe solitons Warped product Scalar curvature Gradient estimates CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente |
title_full |
Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente |
title_fullStr |
Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente |
title_full_unstemmed |
Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente |
title_sort |
Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente |
author |
Tokura, Willian Isao |
author_facet |
Tokura, Willian Isao |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Adriano, Levi Rosa |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3206466156270217 |
dc.contributor.referee1.fl_str_mv |
Adriano, Levi Rosa |
dc.contributor.referee2.fl_str_mv |
Silva, Edcarlos Domingos da |
dc.contributor.referee3.fl_str_mv |
Pina, Romildo da Silva |
dc.contributor.referee4.fl_str_mv |
Sousa, Paulo Alexandre Araújo |
dc.contributor.referee5.fl_str_mv |
Ribeiro Junior, Ernani de Sousa |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3530744794583222 |
dc.contributor.author.fl_str_mv |
Tokura, Willian Isao |
contributor_str_mv |
Adriano, Levi Rosa Adriano, Levi Rosa Silva, Edcarlos Domingos da Pina, Romildo da Silva Sousa, Paulo Alexandre Araújo Ribeiro Junior, Ernani de Sousa |
dc.subject.por.fl_str_mv |
Desigualdade de Caffarelli-Kohn-Nirenberg (CKN) Rigidez Solitons de Yamabe gradiente Produto torcido Curvatura escalar Estimativa de gradiente |
topic |
Desigualdade de Caffarelli-Kohn-Nirenberg (CKN) Rigidez Solitons de Yamabe gradiente Produto torcido Curvatura escalar Estimativa de gradiente Caffarelli-Kohn-Nirenberg inequality Rigidity Gradient Yamabe solitons Warped product Scalar curvature Gradient estimates CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Caffarelli-Kohn-Nirenberg inequality Rigidity Gradient Yamabe solitons Warped product Scalar curvature Gradient estimates |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
This thesis deals with two distinct problems. Namely, we study [(P1)] Rigidity of metric spaces that support CKN inequality; [(P2)] Gradient Yamabe solitons on top of warped product manifolds B x f F. For the first problem, we prove that the metric measure spaces that support the CKN inequality have n-dimensional volume growth, that is, there exists a universal constant C 0gt; 0 such that, m(B x (ρ)) ≥ C 0 ρ n , ∀x ∈ M, ρ gt; 0. As application, some rigidity theorems are obtained in the following spaces: Riemannian manifolds, Finsler manifolds and Alexandrov spaces. For the second problem, taking a gradient Yamabe soliton (B x f F, g, h, ρ), we obtain triviality results for h and f by means of some hypotheses on the base B. Furthermore, under a hypothesis involving the Ricci curvature of the base Ric gB , we prove estimates for h, f and for scalar curvature scal g , in addition, by means of a warping gradient estimates, we present a beautiful obstruction in the construction of gradient Yamabe solitons on warped product manifolds. Finally, by making use of invariant solution techniques, we classify all steady gradient Yamabe solitons with a conformally flat base that is invariant by the action of a codimension 1 translation group. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-06-18T15:47:14Z |
dc.date.issued.fl_str_mv |
2019-05-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
TOKURA, W. I. Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente. 2019. 108 f Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9718 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000044cd |
identifier_str_mv |
TOKURA, W. I. Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente. 2019. 108 f Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/00130000044cd |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/9718 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/3d131725-1e04-4963-9d92-bfb7245b1528/download http://repositorio.bc.ufg.br/tede/bitstreams/c5105c2c-271c-43f4-b5a6-038fe71d60f8/download http://repositorio.bc.ufg.br/tede/bitstreams/071af866-7e26-4539-998c-ceb8f5767f1c/download http://repositorio.bc.ufg.br/tede/bitstreams/28ec66f0-c866-4919-b02f-b3a14b9e118d/download http://repositorio.bc.ufg.br/tede/bitstreams/7cc39778-5425-488c-8730-120cba82f9f3/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 1bf854cfa67742f6735a9183006f6a07 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172553296052224 |