Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente

Detalhes bibliográficos
Autor(a) principal: Tokura, Willian Isao
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/00130000044cd
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/9718
Resumo: This thesis deals with two distinct problems. Namely, we study [(P1)] Rigidity of metric spaces that support CKN inequality; [(P2)] Gradient Yamabe solitons on top of warped product manifolds B x f F. For the first problem, we prove that the metric measure spaces that support the CKN inequality have n-dimensional volume growth, that is, there exists a universal constant C 0gt; 0 such that, m(B x (ρ)) ≥ C 0 ρ n , ∀x ∈ M, ρ gt; 0. As application, some rigidity theorems are obtained in the following spaces: Riemannian manifolds, Finsler manifolds and Alexandrov spaces. For the second problem, taking a gradient Yamabe soliton (B x f F, g, h, ρ), we obtain triviality results for h and f by means of some hypotheses on the base B. Furthermore, under a hypothesis involving the Ricci curvature of the base Ric gB , we prove estimates for h, f and for scalar curvature scal g , in addition, by means of a warping gradient estimates, we present a beautiful obstruction in the construction of gradient Yamabe solitons on warped product manifolds. Finally, by making use of invariant solution techniques, we classify all steady gradient Yamabe solitons with a conformally flat base that is invariant by the action of a codimension 1 translation group.
id UFG-2_83c2e506e62b3f554c6bdae9853bba7c
oai_identifier_str oai:repositorio.bc.ufg.br:tede/9718
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Adriano, Levi Rosahttp://lattes.cnpq.br/3206466156270217Adriano, Levi RosaSilva, Edcarlos Domingos daPina, Romildo da SilvaSousa, Paulo Alexandre AraújoRibeiro Junior, Ernani de Sousahttp://lattes.cnpq.br/3530744794583222Tokura, Willian Isao2019-06-18T15:47:14Z2019-05-31TOKURA, W. I. Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente. 2019. 108 f Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9718ark:/38995/00130000044cdThis thesis deals with two distinct problems. Namely, we study [(P1)] Rigidity of metric spaces that support CKN inequality; [(P2)] Gradient Yamabe solitons on top of warped product manifolds B x f F. For the first problem, we prove that the metric measure spaces that support the CKN inequality have n-dimensional volume growth, that is, there exists a universal constant C 0gt; 0 such that, m(B x (ρ)) ≥ C 0 ρ n , ∀x ∈ M, ρ gt; 0. As application, some rigidity theorems are obtained in the following spaces: Riemannian manifolds, Finsler manifolds and Alexandrov spaces. For the second problem, taking a gradient Yamabe soliton (B x f F, g, h, ρ), we obtain triviality results for h and f by means of some hypotheses on the base B. Furthermore, under a hypothesis involving the Ricci curvature of the base Ric gB , we prove estimates for h, f and for scalar curvature scal g , in addition, by means of a warping gradient estimates, we present a beautiful obstruction in the construction of gradient Yamabe solitons on warped product manifolds. Finally, by making use of invariant solution techniques, we classify all steady gradient Yamabe solitons with a conformally flat base that is invariant by the action of a codimension 1 translation group.Esta tese trata de dois problemas distintos. A saber, estudamos (P1) Rigidez de espaços métricos que suportam a desigualdade de CKN; (P2) Solitons de Yamabe gradiente com estrutura de produto torcido B ×f F. Para o primeiro problema, provamos que os espaços métricos com medida que suportam a desigualdade de CKN tem crescimento de volume n-dimensional, isto ´e, existe uma constante universal C0 > 0 tal que, m(Bx(ρ)) ≥ C0ρn, ∀x ∈ M, ρ > 0. Como aplica¸c˜ao, obtemos Teoremas de Rigidez nos seguintes espa¸cos: Variedades Riemannianas, Variedades de Finsler e Espaços de Alexandrov. Para o segundo problema, considerando um soliton de Yamabe gradiente (B ×f F, g, h, ρ), obtemos resultados de trivializa¸c˜ao para h e f assumindo hipóteses sobre B. Al´em disso, sob uma hipótese envolvendo a curvatura de Ricci da base RicgB , provamos estimativas para h, f e para curvatura escalar scalg, ademais, no caso particular da função torção, apresentamos uma bela obstrução na construção dos solitons de Yamabe produto torcido. Por fim, utilizando as técnicas de soluções invariantes, classificamos os solitons de Yamabe gradientes com base conformemente plana steady que são invariantes pela ação do grupo de translações de codimensão 1.Submitted by Ana Caroline Costa (ana_caroline212@hotmail.com) on 2019-06-17T17:45:40Z No. of bitstreams: 2 Tese - Willian Isao Tokura - 2019.pdf: 4014271 bytes, checksum: 1bf854cfa67742f6735a9183006f6a07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-06-18T15:47:14Z (GMT) No. of bitstreams: 2 Tese - Willian Isao Tokura - 2019.pdf: 4014271 bytes, checksum: 1bf854cfa67742f6735a9183006f6a07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-06-18T15:47:14Z (GMT). No. of bitstreams: 2 Tese - Willian Isao Tokura - 2019.pdf: 4014271 bytes, checksum: 1bf854cfa67742f6735a9183006f6a07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-05-31Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDesigualdade de Caffarelli-Kohn-Nirenberg (CKN)RigidezSolitons de Yamabe gradienteProduto torcidoCurvatura escalarEstimativa de gradienteCaffarelli-Kohn-Nirenberg inequalityRigidityGradient Yamabe solitonsWarped productScalar curvatureGradient estimatesCIENCIAS EXATAS E DA TERRA::MATEMATICADesigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradienteThe Caffarelli-Kohn-Nirenberg inequality and gradient Yamabe solitonsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/3d131725-1e04-4963-9d92-bfb7245b1528/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/c5105c2c-271c-43f4-b5a6-038fe71d60f8/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/071af866-7e26-4539-998c-ceb8f5767f1c/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/28ec66f0-c866-4919-b02f-b3a14b9e118d/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Willian Isao Tokura - 2019.pdfTese - Willian Isao Tokura - 2019.pdfapplication/pdf4014271http://repositorio.bc.ufg.br/tede/bitstreams/7cc39778-5425-488c-8730-120cba82f9f3/download1bf854cfa67742f6735a9183006f6a07MD55tede/97182019-06-18 12:47:14.818http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9718http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-06-18T15:47:14Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
dc.title.alternative.eng.fl_str_mv The Caffarelli-Kohn-Nirenberg inequality and gradient Yamabe solitons
title Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
spellingShingle Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
Tokura, Willian Isao
Desigualdade de Caffarelli-Kohn-Nirenberg (CKN)
Rigidez
Solitons de Yamabe gradiente
Produto torcido
Curvatura escalar
Estimativa de gradiente
Caffarelli-Kohn-Nirenberg inequality
Rigidity
Gradient Yamabe solitons
Warped product
Scalar curvature
Gradient estimates
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
title_full Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
title_fullStr Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
title_full_unstemmed Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
title_sort Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente
author Tokura, Willian Isao
author_facet Tokura, Willian Isao
author_role author
dc.contributor.advisor1.fl_str_mv Adriano, Levi Rosa
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3206466156270217
dc.contributor.referee1.fl_str_mv Adriano, Levi Rosa
dc.contributor.referee2.fl_str_mv Silva, Edcarlos Domingos da
dc.contributor.referee3.fl_str_mv Pina, Romildo da Silva
dc.contributor.referee4.fl_str_mv Sousa, Paulo Alexandre Araújo
dc.contributor.referee5.fl_str_mv Ribeiro Junior, Ernani de Sousa
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3530744794583222
dc.contributor.author.fl_str_mv Tokura, Willian Isao
contributor_str_mv Adriano, Levi Rosa
Adriano, Levi Rosa
Silva, Edcarlos Domingos da
Pina, Romildo da Silva
Sousa, Paulo Alexandre Araújo
Ribeiro Junior, Ernani de Sousa
dc.subject.por.fl_str_mv Desigualdade de Caffarelli-Kohn-Nirenberg (CKN)
Rigidez
Solitons de Yamabe gradiente
Produto torcido
Curvatura escalar
Estimativa de gradiente
topic Desigualdade de Caffarelli-Kohn-Nirenberg (CKN)
Rigidez
Solitons de Yamabe gradiente
Produto torcido
Curvatura escalar
Estimativa de gradiente
Caffarelli-Kohn-Nirenberg inequality
Rigidity
Gradient Yamabe solitons
Warped product
Scalar curvature
Gradient estimates
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Caffarelli-Kohn-Nirenberg inequality
Rigidity
Gradient Yamabe solitons
Warped product
Scalar curvature
Gradient estimates
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description This thesis deals with two distinct problems. Namely, we study [(P1)] Rigidity of metric spaces that support CKN inequality; [(P2)] Gradient Yamabe solitons on top of warped product manifolds B x f F. For the first problem, we prove that the metric measure spaces that support the CKN inequality have n-dimensional volume growth, that is, there exists a universal constant C 0gt; 0 such that, m(B x (ρ)) ≥ C 0 ρ n , ∀x ∈ M, ρ gt; 0. As application, some rigidity theorems are obtained in the following spaces: Riemannian manifolds, Finsler manifolds and Alexandrov spaces. For the second problem, taking a gradient Yamabe soliton (B x f F, g, h, ρ), we obtain triviality results for h and f by means of some hypotheses on the base B. Furthermore, under a hypothesis involving the Ricci curvature of the base Ric gB , we prove estimates for h, f and for scalar curvature scal g , in addition, by means of a warping gradient estimates, we present a beautiful obstruction in the construction of gradient Yamabe solitons on warped product manifolds. Finally, by making use of invariant solution techniques, we classify all steady gradient Yamabe solitons with a conformally flat base that is invariant by the action of a codimension 1 translation group.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-06-18T15:47:14Z
dc.date.issued.fl_str_mv 2019-05-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TOKURA, W. I. Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente. 2019. 108 f Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/9718
dc.identifier.dark.fl_str_mv ark:/38995/00130000044cd
identifier_str_mv TOKURA, W. I. Desigualdade de Caffarelli-Kohn-Nirenberg e solitons de Yamabe gradiente. 2019. 108 f Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/00130000044cd
url http://repositorio.bc.ufg.br/tede/handle/tede/9718
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/3d131725-1e04-4963-9d92-bfb7245b1528/download
http://repositorio.bc.ufg.br/tede/bitstreams/c5105c2c-271c-43f4-b5a6-038fe71d60f8/download
http://repositorio.bc.ufg.br/tede/bitstreams/071af866-7e26-4539-998c-ceb8f5767f1c/download
http://repositorio.bc.ufg.br/tede/bitstreams/28ec66f0-c866-4919-b02f-b3a14b9e118d/download
http://repositorio.bc.ufg.br/tede/bitstreams/7cc39778-5425-488c-8730-120cba82f9f3/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
1bf854cfa67742f6735a9183006f6a07
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172553296052224