Ondas viajantes para um problema de EDP Parabólico

Detalhes bibliográficos
Autor(a) principal: Garzon, Brayan Mauricio Rodriguez
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000003csd
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/6138
Resumo: In this work we study and show the existence of traveling waves solutions for a system of parabolic partial differential equations (PPDE’s) which model in-situ combustion process in porous medium. The in-situ combustion process is a thermal method to recovery oil from petrolific reservoirs. The system deduction is making considering two layers of porous rock and aplying the physical laws of balance energy, fuel mass, oxygen mass, total gas mass, and the Darcy’s law which link the pressure and volumetric flow rate. The traveling waves are obtained making an useful variavel change such that convert the PPDE’s system in an ordinary differential equations system (ODE’s) where the existence of heteroclinic orbits is equivalent to the existence of a traveling waves for the system of PPDE’s which connect the burned state to the unburned state. In the proof of the existence and uniquess of such orbits are used basic tools in Qualitative Ordinary Differential Equations Theory, Dynamical Systems, Perturbation Theory and TravelingWaves Theory with special mention to Singular Perturbation Theory and Melnikov Method inside of the perturbation theory.
id UFG-2_92a9b7faa94798601b0c744549098810
oai_identifier_str oai:repositorio.bc.ufg.br:tede/6138
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Mota, Jesus Carlos dahttp://lattes.cnpq.br/8457974658695539Mota, Jesus Carlos dahttp://lattes.cnpq.br/8457974658695539Medrado, João Carlos da RochaSouza, Aparecido Jesuino deGarzon, Brayan Mauricio Rodriguez2016-09-08T17:05:21Z2016-03-04GARZON, Brayan Mauricio Rodriguez. Ondas viajantes para um problema de EDP Parabólico. 2016. 79 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/6138ark:/38995/0013000003csdIn this work we study and show the existence of traveling waves solutions for a system of parabolic partial differential equations (PPDE’s) which model in-situ combustion process in porous medium. The in-situ combustion process is a thermal method to recovery oil from petrolific reservoirs. The system deduction is making considering two layers of porous rock and aplying the physical laws of balance energy, fuel mass, oxygen mass, total gas mass, and the Darcy’s law which link the pressure and volumetric flow rate. The traveling waves are obtained making an useful variavel change such that convert the PPDE’s system in an ordinary differential equations system (ODE’s) where the existence of heteroclinic orbits is equivalent to the existence of a traveling waves for the system of PPDE’s which connect the burned state to the unburned state. In the proof of the existence and uniquess of such orbits are used basic tools in Qualitative Ordinary Differential Equations Theory, Dynamical Systems, Perturbation Theory and TravelingWaves Theory with special mention to Singular Perturbation Theory and Melnikov Method inside of the perturbation theory.Neste trabalho estudamos e mostramos a existência de soluções do tipo onda viajante para um sistema de equações diferenciais parciais parabólico (EDPP’s) que modela um processo de combustão in-situ através de um meio poroso. A combustão in-situ é um método térmico de recuperação de óleo de reservatórios petrolíferos. O sistema é deduzido considerando duas camadas de rocha porosa e aplicando as leis físicas de balanço de energia, de massa de combustível, oxigênio, gás total, e a lei de Darcy que relaciona a pressão e a vazão volumétrica dos fluidos considerados. As ondas viajantes são obtidas fazendo uma mudança de variáveis apropriada de modo que o sistema de EDPP’s se transforme num sistema de equações diferenciais ordinárias (EDO’s), onde a existência de uma orbita conectando dois equilíbrios corresponde-se com a existência de uma onda viajante do sistema de EDPP’s, conectando um estado totalmente queimado com um estado não queimado. Para a prova de existência e unicidade das referidas órbitas são utilizadas ferramentas básicas da Teoria qualitativa das Equações Diferenciais Ordinárias, Sistemas Dinâmicos, Teoria da Perturbação e Teoria de Ondas Viajantes, ressaltando dentro da teoria da perturbação a técnica da Perturbação Singular Geométrica e o Método de Melnikov.Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-09-08T17:05:05Z No. of bitstreams: 2 Dissertação - Brayan Maurício Rodrigues Garzon - 2016.pdf: 1077822 bytes, checksum: 22f0f3e54ede997e3bbec84f88406474 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-09-08T17:05:21Z (GMT) No. of bitstreams: 2 Dissertação - Brayan Maurício Rodrigues Garzon - 2016.pdf: 1077822 bytes, checksum: 22f0f3e54ede997e3bbec84f88406474 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2016-09-08T17:05:21Z (GMT). No. of bitstreams: 2 Dissertação - Brayan Maurício Rodrigues Garzon - 2016.pdf: 1077822 bytes, checksum: 22f0f3e54ede997e3bbec84f88406474 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-03-04Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCombustãoIn-situMeio porosoMétodo melnikovPerturbação singularCombustionIn-situMelnikov methodPorous mediumTraveling wavesSingular perturbationCIENCIAS EXATAS E DA TERRA::MATEMATICAOndas viajantes para um problema de EDP ParabólicoTravelling waves for a parabolic PDE probleminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/3814bf13-f369-40e7-a71c-a36b1f6c712b/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/ebf107c6-2424-4fa6-b8a8-7f576648860d/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/9b4b90df-9ec5-4302-b6e0-12156dac28c6/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/00377d12-ca4c-4bab-8e19-c988e1955446/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Brayan Maurício Rodrigues Garzon - 2016.pdfDissertação - Brayan Maurício Rodrigues Garzon - 2016.pdfapplication/pdf1077822http://repositorio.bc.ufg.br/tede/bitstreams/599c5f6b-1fa0-45f7-b315-a6fa396437eb/download22f0f3e54ede997e3bbec84f88406474MD55tede/61382016-09-08 14:05:21.893http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/6138http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-09-08T17:05:21Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Ondas viajantes para um problema de EDP Parabólico
dc.title.alternative.eng.fl_str_mv Travelling waves for a parabolic PDE problem
title Ondas viajantes para um problema de EDP Parabólico
spellingShingle Ondas viajantes para um problema de EDP Parabólico
Garzon, Brayan Mauricio Rodriguez
Combustão
In-situ
Meio poroso
Método melnikov
Perturbação singular
Combustion
In-situ
Melnikov method
Porous medium
Traveling waves
Singular perturbation
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Ondas viajantes para um problema de EDP Parabólico
title_full Ondas viajantes para um problema de EDP Parabólico
title_fullStr Ondas viajantes para um problema de EDP Parabólico
title_full_unstemmed Ondas viajantes para um problema de EDP Parabólico
title_sort Ondas viajantes para um problema de EDP Parabólico
author Garzon, Brayan Mauricio Rodriguez
author_facet Garzon, Brayan Mauricio Rodriguez
author_role author
dc.contributor.advisor1.fl_str_mv Mota, Jesus Carlos da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8457974658695539
dc.contributor.referee1.fl_str_mv Mota, Jesus Carlos da
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8457974658695539
dc.contributor.referee2.fl_str_mv Medrado, João Carlos da Rocha
dc.contributor.referee3.fl_str_mv Souza, Aparecido Jesuino de
dc.contributor.author.fl_str_mv Garzon, Brayan Mauricio Rodriguez
contributor_str_mv Mota, Jesus Carlos da
Mota, Jesus Carlos da
Medrado, João Carlos da Rocha
Souza, Aparecido Jesuino de
dc.subject.por.fl_str_mv Combustão
In-situ
Meio poroso
Método melnikov
Perturbação singular
topic Combustão
In-situ
Meio poroso
Método melnikov
Perturbação singular
Combustion
In-situ
Melnikov method
Porous medium
Traveling waves
Singular perturbation
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Combustion
In-situ
Melnikov method
Porous medium
Traveling waves
Singular perturbation
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this work we study and show the existence of traveling waves solutions for a system of parabolic partial differential equations (PPDE’s) which model in-situ combustion process in porous medium. The in-situ combustion process is a thermal method to recovery oil from petrolific reservoirs. The system deduction is making considering two layers of porous rock and aplying the physical laws of balance energy, fuel mass, oxygen mass, total gas mass, and the Darcy’s law which link the pressure and volumetric flow rate. The traveling waves are obtained making an useful variavel change such that convert the PPDE’s system in an ordinary differential equations system (ODE’s) where the existence of heteroclinic orbits is equivalent to the existence of a traveling waves for the system of PPDE’s which connect the burned state to the unburned state. In the proof of the existence and uniquess of such orbits are used basic tools in Qualitative Ordinary Differential Equations Theory, Dynamical Systems, Perturbation Theory and TravelingWaves Theory with special mention to Singular Perturbation Theory and Melnikov Method inside of the perturbation theory.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-08T17:05:21Z
dc.date.issued.fl_str_mv 2016-03-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GARZON, Brayan Mauricio Rodriguez. Ondas viajantes para um problema de EDP Parabólico. 2016. 79 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2016.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/6138
dc.identifier.dark.fl_str_mv ark:/38995/0013000003csd
identifier_str_mv GARZON, Brayan Mauricio Rodriguez. Ondas viajantes para um problema de EDP Parabólico. 2016. 79 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2016.
ark:/38995/0013000003csd
url http://repositorio.bc.ufg.br/tede/handle/tede/6138
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/3814bf13-f369-40e7-a71c-a36b1f6c712b/download
http://repositorio.bc.ufg.br/tede/bitstreams/ebf107c6-2424-4fa6-b8a8-7f576648860d/download
http://repositorio.bc.ufg.br/tede/bitstreams/9b4b90df-9ec5-4302-b6e0-12156dac28c6/download
http://repositorio.bc.ufg.br/tede/bitstreams/00377d12-ca4c-4bab-8e19-c988e1955446/download
http://repositorio.bc.ufg.br/tede/bitstreams/599c5f6b-1fa0-45f7-b315-a6fa396437eb/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
22f0f3e54ede997e3bbec84f88406474
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172545051099136