Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo

Detalhes bibliográficos
Autor(a) principal: Guimarães , Angelo
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000008fxt
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/6901
Resumo: In this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p<q<p* , and when 1<q<p we use the genus of Krasnoselskii finding infinitely many solutions. If f is not null and σ=0 we have a non homogeneous problem that we prove to have infinitely many solutions, using a method developed by P. Rabinowitz.
id UFG-2_aa5b5789a704efd58459f3636e008eb1
oai_identifier_str oai:repositorio.bc.ufg.br:tede/6901
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Gonçalves , José Valdo Abreuhttp://lattes.cnpq.br/5148611284176776Gonçalves, José Valdo AbreuSilva , Edcarlos Domingos daFigueiredo , Giovany de Jesus Malcherhttp://lattes.cnpq.br/5063719701746714Guimarães , Angelo2017-03-06T14:33:53Z2017-03-01GUIMARÃES, Angelo. Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo. 2017. 67 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/6901ark:/38995/0013000008fxtIn this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p<q<p* , and when 1<q<p we use the genus of Krasnoselskii finding infinitely many solutions. If f is not null and σ=0 we have a non homogeneous problem that we prove to have infinitely many solutions, using a method developed by P. Rabinowitz.Neste trabalho estudaremos existência e multiplicidade de soluções fracas do problema elíptico com termo semilinear côncavo-convexo, em um domínio limitado de um espaço euclidiano de dimensão N. Ao tomarmos f=0 e σ=1 temos um problema homogêneo com expoente crítico de Sobolev em que utilizamos o Teorema do Passo da Montanha para encontrar existência de uma solução quando p<q<p*. Utilizamos o gênero de Krasnoselskii para encontrar infinitas soluções quando 1<q<p. Quando f não é nula e σ=0 temos um problema do tipo não homogêneo que provamos possuir infinitas soluções utilizando um método desenvolvido por P. Rabinowitz.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:05Z No. of bitstreams: 2 Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:53Z (GMT) No. of bitstreams: 2 Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-03-06T14:33:53Z (GMT). No. of bitstreams: 2 Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-01Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessProblemas elipticos quasilinearesTermo semilinear concavoconvexoExpoente crítico de Sobolev,MutiplicidadeMétodos variacionaisQuasilinear eliptic problemsOncave-convex semilinear termcSobolev critical expoentMultiplicityVariational methodsCIENCIAS EXATAS E DA TERRA::MATEMATICAExistência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/1165cf49-b051-4a65-bbe7-1bb191820cb8/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/393e7e24-af36-4ca0-acb3-9a4ff87813e8/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/5b3a9faa-66b0-4d0c-b5e8-ac924560ff33/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/03f99841-37db-4e71-9d5e-52b0df3e42a9/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Angelo Guimarães - 2017.pdfDissertação - Angelo Guimarães - 2017.pdfapplication/pdf2117097http://repositorio.bc.ufg.br/tede/bitstreams/57faf8e7-1e7d-413d-877f-65b74f31521e/downloaddec3403d71344aacfe3834890266b503MD55tede/69012017-03-06 11:33:53.942http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/6901http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-03-06T14:33:53Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
title Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
spellingShingle Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
Guimarães , Angelo
Problemas elipticos quasilineares
Termo semilinear concavoconvexo
Expoente crítico de Sobolev,
Mutiplicidade
Métodos variacionais
Quasilinear eliptic problems
Oncave-convex semilinear term
c
Sobolev critical expoent
Multiplicity
Variational methods
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
title_full Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
title_fullStr Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
title_full_unstemmed Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
title_sort Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
author Guimarães , Angelo
author_facet Guimarães , Angelo
author_role author
dc.contributor.advisor1.fl_str_mv Gonçalves , José Valdo Abreu
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5148611284176776
dc.contributor.referee1.fl_str_mv Gonçalves, José Valdo Abreu
dc.contributor.referee2.fl_str_mv Silva , Edcarlos Domingos da
dc.contributor.referee3.fl_str_mv Figueiredo , Giovany de Jesus Malcher
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5063719701746714
dc.contributor.author.fl_str_mv Guimarães , Angelo
contributor_str_mv Gonçalves , José Valdo Abreu
Gonçalves, José Valdo Abreu
Silva , Edcarlos Domingos da
Figueiredo , Giovany de Jesus Malcher
dc.subject.por.fl_str_mv Problemas elipticos quasilineares
Termo semilinear concavoconvexo
Expoente crítico de Sobolev,
Mutiplicidade
Métodos variacionais
topic Problemas elipticos quasilineares
Termo semilinear concavoconvexo
Expoente crítico de Sobolev,
Mutiplicidade
Métodos variacionais
Quasilinear eliptic problems
Oncave-convex semilinear term
c
Sobolev critical expoent
Multiplicity
Variational methods
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Quasilinear eliptic problems
Oncave-convex semilinear term
c
Sobolev critical expoent
Multiplicity
Variational methods
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p<q<p* , and when 1<q<p we use the genus of Krasnoselskii finding infinitely many solutions. If f is not null and σ=0 we have a non homogeneous problem that we prove to have infinitely many solutions, using a method developed by P. Rabinowitz.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-03-06T14:33:53Z
dc.date.issued.fl_str_mv 2017-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GUIMARÃES, Angelo. Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo. 2017. 67 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/6901
dc.identifier.dark.fl_str_mv ark:/38995/0013000008fxt
identifier_str_mv GUIMARÃES, Angelo. Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo. 2017. 67 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
ark:/38995/0013000008fxt
url http://repositorio.bc.ufg.br/tede/handle/tede/6901
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/1165cf49-b051-4a65-bbe7-1bb191820cb8/download
http://repositorio.bc.ufg.br/tede/bitstreams/393e7e24-af36-4ca0-acb3-9a4ff87813e8/download
http://repositorio.bc.ufg.br/tede/bitstreams/5b3a9faa-66b0-4d0c-b5e8-ac924560ff33/download
http://repositorio.bc.ufg.br/tede/bitstreams/03f99841-37db-4e71-9d5e-52b0df3e42a9/download
http://repositorio.bc.ufg.br/tede/bitstreams/57faf8e7-1e7d-413d-877f-65b74f31521e/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
dec3403d71344aacfe3834890266b503
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172600241848320