Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000008fxt |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/6901 |
Resumo: | In this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p<q<p* , and when 1<q<p we use the genus of Krasnoselskii finding infinitely many solutions. If f is not null and σ=0 we have a non homogeneous problem that we prove to have infinitely many solutions, using a method developed by P. Rabinowitz. |
id |
UFG-2_aa5b5789a704efd58459f3636e008eb1 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/6901 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Gonçalves , José Valdo Abreuhttp://lattes.cnpq.br/5148611284176776Gonçalves, José Valdo AbreuSilva , Edcarlos Domingos daFigueiredo , Giovany de Jesus Malcherhttp://lattes.cnpq.br/5063719701746714Guimarães , Angelo2017-03-06T14:33:53Z2017-03-01GUIMARÃES, Angelo. Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo. 2017. 67 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/6901ark:/38995/0013000008fxtIn this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p<q<p* , and when 1<q<p we use the genus of Krasnoselskii finding infinitely many solutions. If f is not null and σ=0 we have a non homogeneous problem that we prove to have infinitely many solutions, using a method developed by P. Rabinowitz.Neste trabalho estudaremos existência e multiplicidade de soluções fracas do problema elíptico com termo semilinear côncavo-convexo, em um domínio limitado de um espaço euclidiano de dimensão N. Ao tomarmos f=0 e σ=1 temos um problema homogêneo com expoente crítico de Sobolev em que utilizamos o Teorema do Passo da Montanha para encontrar existência de uma solução quando p<q<p*. Utilizamos o gênero de Krasnoselskii para encontrar infinitas soluções quando 1<q<p. Quando f não é nula e σ=0 temos um problema do tipo não homogêneo que provamos possuir infinitas soluções utilizando um método desenvolvido por P. Rabinowitz.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:05Z No. of bitstreams: 2 Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:53Z (GMT) No. of bitstreams: 2 Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-03-06T14:33:53Z (GMT). No. of bitstreams: 2 Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-01Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessProblemas elipticos quasilinearesTermo semilinear concavoconvexoExpoente crítico de Sobolev,MutiplicidadeMétodos variacionaisQuasilinear eliptic problemsOncave-convex semilinear termcSobolev critical expoentMultiplicityVariational methodsCIENCIAS EXATAS E DA TERRA::MATEMATICAExistência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/1165cf49-b051-4a65-bbe7-1bb191820cb8/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/393e7e24-af36-4ca0-acb3-9a4ff87813e8/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/5b3a9faa-66b0-4d0c-b5e8-ac924560ff33/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/03f99841-37db-4e71-9d5e-52b0df3e42a9/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Angelo Guimarães - 2017.pdfDissertação - Angelo Guimarães - 2017.pdfapplication/pdf2117097http://repositorio.bc.ufg.br/tede/bitstreams/57faf8e7-1e7d-413d-877f-65b74f31521e/downloaddec3403d71344aacfe3834890266b503MD55tede/69012017-03-06 11:33:53.942http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/6901http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-03-06T14:33:53Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo |
title |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo |
spellingShingle |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo Guimarães , Angelo Problemas elipticos quasilineares Termo semilinear concavoconvexo Expoente crítico de Sobolev, Mutiplicidade Métodos variacionais Quasilinear eliptic problems Oncave-convex semilinear term c Sobolev critical expoent Multiplicity Variational methods CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo |
title_full |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo |
title_fullStr |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo |
title_full_unstemmed |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo |
title_sort |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo |
author |
Guimarães , Angelo |
author_facet |
Guimarães , Angelo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Gonçalves , José Valdo Abreu |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5148611284176776 |
dc.contributor.referee1.fl_str_mv |
Gonçalves, José Valdo Abreu |
dc.contributor.referee2.fl_str_mv |
Silva , Edcarlos Domingos da |
dc.contributor.referee3.fl_str_mv |
Figueiredo , Giovany de Jesus Malcher |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5063719701746714 |
dc.contributor.author.fl_str_mv |
Guimarães , Angelo |
contributor_str_mv |
Gonçalves , José Valdo Abreu Gonçalves, José Valdo Abreu Silva , Edcarlos Domingos da Figueiredo , Giovany de Jesus Malcher |
dc.subject.por.fl_str_mv |
Problemas elipticos quasilineares Termo semilinear concavoconvexo Expoente crítico de Sobolev, Mutiplicidade Métodos variacionais |
topic |
Problemas elipticos quasilineares Termo semilinear concavoconvexo Expoente crítico de Sobolev, Mutiplicidade Métodos variacionais Quasilinear eliptic problems Oncave-convex semilinear term c Sobolev critical expoent Multiplicity Variational methods CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Quasilinear eliptic problems Oncave-convex semilinear term c Sobolev critical expoent Multiplicity Variational methods |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p<q<p* , and when 1<q<p we use the genus of Krasnoselskii finding infinitely many solutions. If f is not null and σ=0 we have a non homogeneous problem that we prove to have infinitely many solutions, using a method developed by P. Rabinowitz. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-03-06T14:33:53Z |
dc.date.issued.fl_str_mv |
2017-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GUIMARÃES, Angelo. Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo. 2017. 67 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/6901 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000008fxt |
identifier_str_mv |
GUIMARÃES, Angelo. Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo. 2017. 67 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017. ark:/38995/0013000008fxt |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/6901 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/1165cf49-b051-4a65-bbe7-1bb191820cb8/download http://repositorio.bc.ufg.br/tede/bitstreams/393e7e24-af36-4ca0-acb3-9a4ff87813e8/download http://repositorio.bc.ufg.br/tede/bitstreams/5b3a9faa-66b0-4d0c-b5e8-ac924560ff33/download http://repositorio.bc.ufg.br/tede/bitstreams/03f99841-37db-4e71-9d5e-52b0df3e42a9/download http://repositorio.bc.ufg.br/tede/bitstreams/57faf8e7-1e7d-413d-877f-65b74f31521e/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e dec3403d71344aacfe3834890266b503 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172600241848320 |