Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000005tjs |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11363 |
Resumo: | In this work, the process of admission and scheduling of pregnant women in a perinatal network composed of two maternities is considered. The main service sectors that make up each perinatal unit and their respective functions and resources used are described. In addition, a survey is made of the main challenges and difficulties faced by these health units in Brazil in recent decades. Thus, given the problems and challenges pointed out, different load balancing algorithms are used in the proposed perinatal network, to find the best task scheduling policy in the system that increases the efficiency of the network. A solution for a mixed integer linear programming problem is proposed using a load balancing algorithm based on metaheuristics of the behavior of honey bees. Besides, some algorithms are analyzed where each considered model has its own task routing strategy designed to reduce the average time of the pregnant women entering the perinatal system, balancing the workload among the perinatal care centers. Two classes of routing are used, non-deterministic and deterministic. In the deterministic class, three routing policies are analyzed that seek to decrease the average stay time, the average service time, or to improve the flow in the system. In addition, a dynamic control policy based on a queuing threshold is also analyzed, where a specific queue length is defined and identified by a threshold. The routing policy named Join-the-Shortest-Queue (JSQ) is also analyzed, where each pregnant woman who enters the system is directed to the maternity ward with the shortest queue. The results are presented and analyzed varying both the arrival rates of pregnant women and the rates of care in the main sectors in a maternity hospital. Also, a discrete event simulation model is made to analyze the waiting time in queues. Finally, using the formula of Erlang-B, the capacity of the perinatal units is calculated based on the time of permanence of the pregnant women in the system obtained through the load balancing algorithms. The results obtained confirm that routing and scheduling policies that consider the task arrival rate and the system queue length are more efficient as the arrival rate increases, therefore being applicable in healthcare systems with increasing demand and that with planning it is possible to obtain an accurate description of the number of occupied beds and the number of beds needed according to the demand required by the perinatal units making these units more efficient. |
id |
UFG-2_aaa6e0a54287069f2e2a01fb04f00f20 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11363 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Rocha, Flávio Geraldo Coelhohttp://lattes.cnpq.br/5583470206347446Rocha, Flávio Geraldo CoelhoLemos, Rodrigo PintoCastro, Marcelo Stehling dePinto, Leizer de Limahttp://lattes.cnpq.br/7041557564679211Oliveira, Ricardo Bruno Osés de2021-05-13T11:26:24Z2021-05-13T11:26:24Z2021-02-18OLIVEIRA, R. B. O. Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal. 2021. 100 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11363ark:/38995/0013000005tjsIn this work, the process of admission and scheduling of pregnant women in a perinatal network composed of two maternities is considered. The main service sectors that make up each perinatal unit and their respective functions and resources used are described. In addition, a survey is made of the main challenges and difficulties faced by these health units in Brazil in recent decades. Thus, given the problems and challenges pointed out, different load balancing algorithms are used in the proposed perinatal network, to find the best task scheduling policy in the system that increases the efficiency of the network. A solution for a mixed integer linear programming problem is proposed using a load balancing algorithm based on metaheuristics of the behavior of honey bees. Besides, some algorithms are analyzed where each considered model has its own task routing strategy designed to reduce the average time of the pregnant women entering the perinatal system, balancing the workload among the perinatal care centers. Two classes of routing are used, non-deterministic and deterministic. In the deterministic class, three routing policies are analyzed that seek to decrease the average stay time, the average service time, or to improve the flow in the system. In addition, a dynamic control policy based on a queuing threshold is also analyzed, where a specific queue length is defined and identified by a threshold. The routing policy named Join-the-Shortest-Queue (JSQ) is also analyzed, where each pregnant woman who enters the system is directed to the maternity ward with the shortest queue. The results are presented and analyzed varying both the arrival rates of pregnant women and the rates of care in the main sectors in a maternity hospital. Also, a discrete event simulation model is made to analyze the waiting time in queues. Finally, using the formula of Erlang-B, the capacity of the perinatal units is calculated based on the time of permanence of the pregnant women in the system obtained through the load balancing algorithms. The results obtained confirm that routing and scheduling policies that consider the task arrival rate and the system queue length are more efficient as the arrival rate increases, therefore being applicable in healthcare systems with increasing demand and that with planning it is possible to obtain an accurate description of the number of occupied beds and the number of beds needed according to the demand required by the perinatal units making these units more efficient.Nesta dissertação, é considerado o processo de admissão e escalonamento de gestantes em uma rede perinatal composta por duas maternidades. São descritos os principais setores de serviços que compõem cada unidade perinatal e suas respectivas funções e recursos utilizados. Além disso, é feito um levantamento dos principais desafios e dificuldades enfrentados por essas unidades de saúde no Brasil nas últimas décadas. Assim, diante dos problemas e desafios apontados, são utilizados diferentes algoritmos de balanceamento de carga na rede perinatal proposta, a fim de encontrar a melhor política de escalonamento de tarefas no sistema que aumente a eficiência da rede. É proposta uma solução para um problema de programação linear inteira mista que utiliza um algoritmo de balanceamento de carga baseado na meta-heurística do comportamento das abelhas produtoras de mel. Além disso, são analisados alguns algoritmos onde cada um é diferenciado por uma estratégia de roteamento de tarefas projetada para reduzir o tempo médio de atendimento às gestantes que entram no sistema perinatal, equilibrando a carga de trabalho entre as maternidades. São utilizadas duas classes de roteamento, não determinística e determinística. Na classe determinística, são analisadas três políticas de roteamento que buscam diminuir o tempo médio de permanência, o tempo médio de atendimento ou melhorar a vazão no sistema. Adicionalmente, é analisada também, uma política de controle dinâmico com enfileiramento baseado em um limiar, onde um comprimento específico da fila é definido e identificado por um limite. Também é analisada a política de roteamento de junção a fila mais curta, onde cada gestante que entra no sistema é encaminhada para a maternidade com a menor fila de espera. Os resultados são apresentados e analisados variando tanto as taxas de chegada das gestantes, quanto as taxas de atendimentos nos principais setores existentes em uma maternidade. Além disso, é feito um modelo de simulação de eventos discretos para analisar o tempo de espera nas filas. Por fim, utilizando-se da fórmula de Erlang-B, é feito o cálculo da capacidade das unidades perinatais com base no tempo de permanência das gestantes no sistema obtido por meio dos algoritmos de balanceamento de carga. Os resultados obtidos confirmam que, políticas de roteamento e escalonamento que levam em consideração a taxa de chegadas de tarefas e o comprimento de fila do sistema são mais eficientes à medida que a taxa de chegadas aumenta, sendo, portanto aplicáveis em sistemas de saúde com uma crescente demanda e que com planejamento é possível obter uma descrição precisa do número de leitos ocupados e do número de leitos necessários de acordo com a demanda exigida pelas unidades perinatais tornando essas unidades mais eficientes.Submitted by Onia Arantes Albuquerque (onia.ufg@gmail.com) on 2021-05-12T13:53:11Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Dissertação - Ricardo Bruno Osés de Oliveira - 2021.pdf: 1432314 bytes, checksum: 9ccf546c5b0f1a7a2580ddcb7b8842ea (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-05-13T11:26:24Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Dissertação - Ricardo Bruno Osés de Oliveira - 2021.pdf: 1432314 bytes, checksum: 9ccf546c5b0f1a7a2580ddcb7b8842ea (MD5)Made available in DSpace on 2021-05-13T11:26:24Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Dissertação - Ricardo Bruno Osés de Oliveira - 2021.pdf: 1432314 bytes, checksum: 9ccf546c5b0f1a7a2580ddcb7b8842ea (MD5) Previous issue date: 2021-02-18Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia Elétrica e da Computação (EMC)UFGBrasilEscola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessBalanceamento de cargaMarkovPerinatalMaternidadeComportamento das abelhasLoad balancingMarkovPerinatalMaternityHoney bee behaviorENGENHARIAS::ENGENHARIA ELETRICAAplicação de algoritmos de controle e balanceamento de carga a um sistema perinatalApplication of control algorithms and load balancing to a perinatal systeminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis4950050050050044781reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/05c10e83-225e-4820-b442-41d9370e38be/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/dd12fe22-a198-4fbf-8787-b3290f39d28c/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Ricardo Bruno Osés de Oliveira - 2021.pdfDissertação - Ricardo Bruno Osés de Oliveira - 2021.pdfapplication/pdf1432314http://repositorio.bc.ufg.br/tede/bitstreams/b8e0d3b4-bc02-4689-8bcc-e2d105fa0461/download9ccf546c5b0f1a7a2580ddcb7b8842eaMD53tede/113632021-05-13 08:26:24.96http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11363http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-05-13T11:26:24Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal |
dc.title.alternative.eng.fl_str_mv |
Application of control algorithms and load balancing to a perinatal system |
title |
Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal |
spellingShingle |
Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal Oliveira, Ricardo Bruno Osés de Balanceamento de carga Markov Perinatal Maternidade Comportamento das abelhas Load balancing Markov Perinatal Maternity Honey bee behavior ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal |
title_full |
Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal |
title_fullStr |
Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal |
title_full_unstemmed |
Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal |
title_sort |
Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal |
author |
Oliveira, Ricardo Bruno Osés de |
author_facet |
Oliveira, Ricardo Bruno Osés de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Rocha, Flávio Geraldo Coelho |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5583470206347446 |
dc.contributor.referee1.fl_str_mv |
Rocha, Flávio Geraldo Coelho |
dc.contributor.referee2.fl_str_mv |
Lemos, Rodrigo Pinto |
dc.contributor.referee3.fl_str_mv |
Castro, Marcelo Stehling de |
dc.contributor.referee4.fl_str_mv |
Pinto, Leizer de Lima |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7041557564679211 |
dc.contributor.author.fl_str_mv |
Oliveira, Ricardo Bruno Osés de |
contributor_str_mv |
Rocha, Flávio Geraldo Coelho Rocha, Flávio Geraldo Coelho Lemos, Rodrigo Pinto Castro, Marcelo Stehling de Pinto, Leizer de Lima |
dc.subject.por.fl_str_mv |
Balanceamento de carga Markov Perinatal Maternidade Comportamento das abelhas |
topic |
Balanceamento de carga Markov Perinatal Maternidade Comportamento das abelhas Load balancing Markov Perinatal Maternity Honey bee behavior ENGENHARIAS::ENGENHARIA ELETRICA |
dc.subject.eng.fl_str_mv |
Load balancing Markov Perinatal Maternity Honey bee behavior |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA ELETRICA |
description |
In this work, the process of admission and scheduling of pregnant women in a perinatal network composed of two maternities is considered. The main service sectors that make up each perinatal unit and their respective functions and resources used are described. In addition, a survey is made of the main challenges and difficulties faced by these health units in Brazil in recent decades. Thus, given the problems and challenges pointed out, different load balancing algorithms are used in the proposed perinatal network, to find the best task scheduling policy in the system that increases the efficiency of the network. A solution for a mixed integer linear programming problem is proposed using a load balancing algorithm based on metaheuristics of the behavior of honey bees. Besides, some algorithms are analyzed where each considered model has its own task routing strategy designed to reduce the average time of the pregnant women entering the perinatal system, balancing the workload among the perinatal care centers. Two classes of routing are used, non-deterministic and deterministic. In the deterministic class, three routing policies are analyzed that seek to decrease the average stay time, the average service time, or to improve the flow in the system. In addition, a dynamic control policy based on a queuing threshold is also analyzed, where a specific queue length is defined and identified by a threshold. The routing policy named Join-the-Shortest-Queue (JSQ) is also analyzed, where each pregnant woman who enters the system is directed to the maternity ward with the shortest queue. The results are presented and analyzed varying both the arrival rates of pregnant women and the rates of care in the main sectors in a maternity hospital. Also, a discrete event simulation model is made to analyze the waiting time in queues. Finally, using the formula of Erlang-B, the capacity of the perinatal units is calculated based on the time of permanence of the pregnant women in the system obtained through the load balancing algorithms. The results obtained confirm that routing and scheduling policies that consider the task arrival rate and the system queue length are more efficient as the arrival rate increases, therefore being applicable in healthcare systems with increasing demand and that with planning it is possible to obtain an accurate description of the number of occupied beds and the number of beds needed according to the demand required by the perinatal units making these units more efficient. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-05-13T11:26:24Z |
dc.date.available.fl_str_mv |
2021-05-13T11:26:24Z |
dc.date.issued.fl_str_mv |
2021-02-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
OLIVEIRA, R. B. O. Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal. 2021. 100 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11363 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000005tjs |
identifier_str_mv |
OLIVEIRA, R. B. O. Aplicação de algoritmos de controle e balanceamento de carga a um sistema perinatal. 2021. 100 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021. ark:/38995/0013000005tjs |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11363 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
49 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
4 |
dc.relation.cnpq.fl_str_mv |
478 |
dc.relation.sponsorship.fl_str_mv |
1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/05c10e83-225e-4820-b442-41d9370e38be/download http://repositorio.bc.ufg.br/tede/bitstreams/dd12fe22-a198-4fbf-8787-b3290f39d28c/download http://repositorio.bc.ufg.br/tede/bitstreams/b8e0d3b4-bc02-4689-8bcc-e2d105fa0461/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 9ccf546c5b0f1a7a2580ddcb7b8842ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172571650326528 |