Sobre rigidez de gradiente quase Ricci Soliton

Detalhes bibliográficos
Autor(a) principal: Gomes, Maria Francisca de Sousa
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000008g18
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/7275
Resumo: This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn.
id UFG-2_adab48600501e433ef70ee2521038bd7
oai_identifier_str oai:repositorio.bc.ufg.br:tede/7275
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pieterzack, Maurício DonizettiRodrigues, Luciana Maria Dias de Ávilahttp://lattes.cnpq.br/0113756117625584Gomes, Maria Francisca de Sousa2017-05-05T13:03:10Z2017-04-20GOMES, M. F. S. Sobre rigidez de gradiente quase Ricci Soliton. 2017. 62 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/7275ark:/38995/0013000008g18This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn.Este trabalho está baseado em [1] e tem por objetivo apresentar um resultado de rigidez para gradiente quase Ricci soliton. Provaremos que um gradiente quase Ricci soliton com curvatura escalar não-negativa, em que ∇ f é um campo conforme não-trivial, é ou o espaço Euclidiano R n ou a Esfera S n . Além disso, temos que no caso Esférico, a função potencial é dada pela primeira auto função do Laplaciano. Por fim, encontraremos condições necessárias e suficientes para que um gradiente quase Ricci soliton compacto localmente conformemente flat seja isométrico a esfera Sn.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-05-04T20:17:22Z No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-05-05T13:03:10Z (GMT) No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-05-05T13:03:10Z (GMT). No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-04-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGradiente quase Ricci SolitonCompactoLocalmemente conformemente flatGradient almost Ricci SolitonCompactLocally conformally flatMATEMATICA::GEOMETRIA E TOPOLOGIASobre rigidez de gradiente quase Ricci SolitonAbout rigidity of gradient almost Ricci Solitoninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-426877751233515201563578808849912206292075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/3e694cdd-8e07-4a37-b04c-d342f929c598/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/b51e0fd7-c796-4da5-a873-b220b219212a/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/419fa46c-bcb6-49eb-9000-e5c0a1c7f09e/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/72cbd715-121d-4cf3-81da-e043bab37077/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Maria Francisca de Sousa Gomes - 2017.pdfDissertação - Maria Francisca de Sousa Gomes - 2017.pdfapplication/pdf1138083http://repositorio.bc.ufg.br/tede/bitstreams/a571b071-15f2-49d7-b08d-8fb6e97a94eb/downloadec11ffa7d803dc5e840f5b216f1aaba3MD55tede/72752017-05-05 10:03:10.531http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7275http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-05-05T13:03:10Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Sobre rigidez de gradiente quase Ricci Soliton
dc.title.alternative.eng.fl_str_mv About rigidity of gradient almost Ricci Soliton
title Sobre rigidez de gradiente quase Ricci Soliton
spellingShingle Sobre rigidez de gradiente quase Ricci Soliton
Gomes, Maria Francisca de Sousa
Gradiente quase Ricci Soliton
Compacto
Localmemente conformemente flat
Gradient almost Ricci Soliton
Compact
Locally conformally flat
MATEMATICA::GEOMETRIA E TOPOLOGIA
title_short Sobre rigidez de gradiente quase Ricci Soliton
title_full Sobre rigidez de gradiente quase Ricci Soliton
title_fullStr Sobre rigidez de gradiente quase Ricci Soliton
title_full_unstemmed Sobre rigidez de gradiente quase Ricci Soliton
title_sort Sobre rigidez de gradiente quase Ricci Soliton
author Gomes, Maria Francisca de Sousa
author_facet Gomes, Maria Francisca de Sousa
author_role author
dc.contributor.advisor1.fl_str_mv Pina, Romildo da Silva
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2675728978857991
dc.contributor.referee1.fl_str_mv Pina, Romildo da Silva
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2675728978857991
dc.contributor.referee2.fl_str_mv Pieterzack, Maurício Donizetti
dc.contributor.referee3.fl_str_mv Rodrigues, Luciana Maria Dias de Ávila
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0113756117625584
dc.contributor.author.fl_str_mv Gomes, Maria Francisca de Sousa
contributor_str_mv Pina, Romildo da Silva
Pina, Romildo da Silva
Pieterzack, Maurício Donizetti
Rodrigues, Luciana Maria Dias de Ávila
dc.subject.por.fl_str_mv Gradiente quase Ricci Soliton
Compacto
Localmemente conformemente flat
topic Gradiente quase Ricci Soliton
Compacto
Localmemente conformemente flat
Gradient almost Ricci Soliton
Compact
Locally conformally flat
MATEMATICA::GEOMETRIA E TOPOLOGIA
dc.subject.eng.fl_str_mv Gradient almost Ricci Soliton
Compact
Locally conformally flat
dc.subject.cnpq.fl_str_mv MATEMATICA::GEOMETRIA E TOPOLOGIA
description This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-05-05T13:03:10Z
dc.date.issued.fl_str_mv 2017-04-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GOMES, M. F. S. Sobre rigidez de gradiente quase Ricci Soliton. 2017. 62 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/7275
dc.identifier.dark.fl_str_mv ark:/38995/0013000008g18
identifier_str_mv GOMES, M. F. S. Sobre rigidez de gradiente quase Ricci Soliton. 2017. 62 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
ark:/38995/0013000008g18
url http://repositorio.bc.ufg.br/tede/handle/tede/7275
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv 6357880884991220629
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/3e694cdd-8e07-4a37-b04c-d342f929c598/download
http://repositorio.bc.ufg.br/tede/bitstreams/b51e0fd7-c796-4da5-a873-b220b219212a/download
http://repositorio.bc.ufg.br/tede/bitstreams/419fa46c-bcb6-49eb-9000-e5c0a1c7f09e/download
http://repositorio.bc.ufg.br/tede/bitstreams/72cbd715-121d-4cf3-81da-e043bab37077/download
http://repositorio.bc.ufg.br/tede/bitstreams/a571b071-15f2-49d7-b08d-8fb6e97a94eb/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
ec11ffa7d803dc5e840f5b216f1aaba3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172600257576960