Sobre rigidez de gradiente quase Ricci Soliton
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000008g18 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/7275 |
Resumo: | This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn. |
id |
UFG-2_adab48600501e433ef70ee2521038bd7 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/7275 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pieterzack, Maurício DonizettiRodrigues, Luciana Maria Dias de Ávilahttp://lattes.cnpq.br/0113756117625584Gomes, Maria Francisca de Sousa2017-05-05T13:03:10Z2017-04-20GOMES, M. F. S. Sobre rigidez de gradiente quase Ricci Soliton. 2017. 62 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/7275ark:/38995/0013000008g18This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn.Este trabalho está baseado em [1] e tem por objetivo apresentar um resultado de rigidez para gradiente quase Ricci soliton. Provaremos que um gradiente quase Ricci soliton com curvatura escalar não-negativa, em que ∇ f é um campo conforme não-trivial, é ou o espaço Euclidiano R n ou a Esfera S n . Além disso, temos que no caso Esférico, a função potencial é dada pela primeira auto função do Laplaciano. Por fim, encontraremos condições necessárias e suficientes para que um gradiente quase Ricci soliton compacto localmente conformemente flat seja isométrico a esfera Sn.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-05-04T20:17:22Z No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-05-05T13:03:10Z (GMT) No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-05-05T13:03:10Z (GMT). No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-04-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGradiente quase Ricci SolitonCompactoLocalmemente conformemente flatGradient almost Ricci SolitonCompactLocally conformally flatMATEMATICA::GEOMETRIA E TOPOLOGIASobre rigidez de gradiente quase Ricci SolitonAbout rigidity of gradient almost Ricci Solitoninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-426877751233515201563578808849912206292075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/3e694cdd-8e07-4a37-b04c-d342f929c598/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/b51e0fd7-c796-4da5-a873-b220b219212a/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/419fa46c-bcb6-49eb-9000-e5c0a1c7f09e/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/72cbd715-121d-4cf3-81da-e043bab37077/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Maria Francisca de Sousa Gomes - 2017.pdfDissertação - Maria Francisca de Sousa Gomes - 2017.pdfapplication/pdf1138083http://repositorio.bc.ufg.br/tede/bitstreams/a571b071-15f2-49d7-b08d-8fb6e97a94eb/downloadec11ffa7d803dc5e840f5b216f1aaba3MD55tede/72752017-05-05 10:03:10.531http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7275http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-05-05T13:03:10Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Sobre rigidez de gradiente quase Ricci Soliton |
dc.title.alternative.eng.fl_str_mv |
About rigidity of gradient almost Ricci Soliton |
title |
Sobre rigidez de gradiente quase Ricci Soliton |
spellingShingle |
Sobre rigidez de gradiente quase Ricci Soliton Gomes, Maria Francisca de Sousa Gradiente quase Ricci Soliton Compacto Localmemente conformemente flat Gradient almost Ricci Soliton Compact Locally conformally flat MATEMATICA::GEOMETRIA E TOPOLOGIA |
title_short |
Sobre rigidez de gradiente quase Ricci Soliton |
title_full |
Sobre rigidez de gradiente quase Ricci Soliton |
title_fullStr |
Sobre rigidez de gradiente quase Ricci Soliton |
title_full_unstemmed |
Sobre rigidez de gradiente quase Ricci Soliton |
title_sort |
Sobre rigidez de gradiente quase Ricci Soliton |
author |
Gomes, Maria Francisca de Sousa |
author_facet |
Gomes, Maria Francisca de Sousa |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pina, Romildo da Silva |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2675728978857991 |
dc.contributor.referee1.fl_str_mv |
Pina, Romildo da Silva |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/2675728978857991 |
dc.contributor.referee2.fl_str_mv |
Pieterzack, Maurício Donizetti |
dc.contributor.referee3.fl_str_mv |
Rodrigues, Luciana Maria Dias de Ávila |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0113756117625584 |
dc.contributor.author.fl_str_mv |
Gomes, Maria Francisca de Sousa |
contributor_str_mv |
Pina, Romildo da Silva Pina, Romildo da Silva Pieterzack, Maurício Donizetti Rodrigues, Luciana Maria Dias de Ávila |
dc.subject.por.fl_str_mv |
Gradiente quase Ricci Soliton Compacto Localmemente conformemente flat |
topic |
Gradiente quase Ricci Soliton Compacto Localmemente conformemente flat Gradient almost Ricci Soliton Compact Locally conformally flat MATEMATICA::GEOMETRIA E TOPOLOGIA |
dc.subject.eng.fl_str_mv |
Gradient almost Ricci Soliton Compact Locally conformally flat |
dc.subject.cnpq.fl_str_mv |
MATEMATICA::GEOMETRIA E TOPOLOGIA |
description |
This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-05-05T13:03:10Z |
dc.date.issued.fl_str_mv |
2017-04-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GOMES, M. F. S. Sobre rigidez de gradiente quase Ricci Soliton. 2017. 62 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/7275 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000008g18 |
identifier_str_mv |
GOMES, M. F. S. Sobre rigidez de gradiente quase Ricci Soliton. 2017. 62 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017. ark:/38995/0013000008g18 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/7275 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
6357880884991220629 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/3e694cdd-8e07-4a37-b04c-d342f929c598/download http://repositorio.bc.ufg.br/tede/bitstreams/b51e0fd7-c796-4da5-a873-b220b219212a/download http://repositorio.bc.ufg.br/tede/bitstreams/419fa46c-bcb6-49eb-9000-e5c0a1c7f09e/download http://repositorio.bc.ufg.br/tede/bitstreams/72cbd715-121d-4cf3-81da-e043bab37077/download http://repositorio.bc.ufg.br/tede/bitstreams/a571b071-15f2-49d7-b08d-8fb6e97a94eb/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e ec11ffa7d803dc5e840f5b216f1aaba3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172600257576960 |