Algoritmos e limites para o número cromático orientado em algumas classes de grafos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000011vp |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/9472 |
Resumo: | Let G = (V, A) be an oriented graph, xy, zt arcs in A(G), and C a set of k distinct colors. A function c: V(G) in C such that c(x) it's different from c(y) and if c(x) = c(t), then c(y) it's different from c(z) it's called oriented k-coloring. The oriented chromatic number Xo(G) it's the smallest k such that G admits an oriented k-coloring. The relative oriented clique number Wro(G) it's the size of the bigger set of vertices such that any two vertices are connected by a path of size up to 2. In this work we present algorithms for some of the polynomial cases of the oriented coloring, we show that a graph G in which its underlying graph contains a single oriented cycle with a size that's multiple of 3 can be colored by a tournament that contains a single oriented cycle and an acyclic graph that doesn't contain the path P with size n + 1 as a subgraph can be colored by the transitive tournament Tn. We show that a graph G has Xo(G) <= 3 if and only if every vertex of G is a source vertex or a sink vertex or every cycle of G has a size that's multiple of 3 or G is acyclic and doesn't contain the path P4 as a subgraph. We show that if G has maximum degree 3 and every source vertex of G has maximum degree 2, then Xo(G) <= 7. We present a relation between the number of cases in which the oriented coloring problem is NP-complete with the number of cases in which the problem is polynomial. We show that if Xo(G) <= 3, then Wro(G) = Xo(G). We show that if G has maximum degree 3 and girth 6, then Wro(G) <= 4. For every oriented cycle C we show that Wro(C) <= 5. For any oriented graph G we show that if G has girth 7, then Wro(G) = 3. We present an algorithm for the generation of tournaments that contains a single oriented cycle and an approximation heuristic for the oriented coloring problem which presents better empirical results than those in the literature. Lastly we show a improvement for the usual brute force approach to the oriented coloring problem. |
id |
UFG-2_cbc0d8d0bf264e237239e0041e42dba3 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9472 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Silva, Hebert Coelho dahttp://lattes.cnpq.br/4898337852702758Silva, Hebert Coelho daSantana, Márcia Rodrigues CappelleFaria, Luerbiohttp://lattes.cnpq.br/8875477479719535Ferreira, Mateus de Paula2019-04-11T11:26:40Z2019-03-07FERREIRA, M. P. Algoritmos e limites para o número cromático orientado em algumas classes de grafos. 2019. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9472ark:/38995/00130000011vpLet G = (V, A) be an oriented graph, xy, zt arcs in A(G), and C a set of k distinct colors. A function c: V(G) in C such that c(x) it's different from c(y) and if c(x) = c(t), then c(y) it's different from c(z) it's called oriented k-coloring. The oriented chromatic number Xo(G) it's the smallest k such that G admits an oriented k-coloring. The relative oriented clique number Wro(G) it's the size of the bigger set of vertices such that any two vertices are connected by a path of size up to 2. In this work we present algorithms for some of the polynomial cases of the oriented coloring, we show that a graph G in which its underlying graph contains a single oriented cycle with a size that's multiple of 3 can be colored by a tournament that contains a single oriented cycle and an acyclic graph that doesn't contain the path P with size n + 1 as a subgraph can be colored by the transitive tournament Tn. We show that a graph G has Xo(G) <= 3 if and only if every vertex of G is a source vertex or a sink vertex or every cycle of G has a size that's multiple of 3 or G is acyclic and doesn't contain the path P4 as a subgraph. We show that if G has maximum degree 3 and every source vertex of G has maximum degree 2, then Xo(G) <= 7. We present a relation between the number of cases in which the oriented coloring problem is NP-complete with the number of cases in which the problem is polynomial. We show that if Xo(G) <= 3, then Wro(G) = Xo(G). We show that if G has maximum degree 3 and girth 6, then Wro(G) <= 4. For every oriented cycle C we show that Wro(C) <= 5. For any oriented graph G we show that if G has girth 7, then Wro(G) = 3. We present an algorithm for the generation of tournaments that contains a single oriented cycle and an approximation heuristic for the oriented coloring problem which presents better empirical results than those in the literature. Lastly we show a improvement for the usual brute force approach to the oriented coloring problem.Seja G = (V, A) um grafo orientado, xy, zt arcos em A(G), e C um conjunto com k cores distintas. Uma função c: V(G) em C tal que c(x) é diferente de c(y) e se c(x) = c(t), então c(y) é diferente de c(z) é chamada de k-coloração orientada. O número cromático orientado Xo(G) é o menor k tal que G admite uma k-coloração orientada. O número clique orientado relativo Wro(G) é o tamanho do maior conjunto de vértices em que quaisquer dois vértices são conectados por um caminho de tamanho até 2. Neste trabalho, apresentamos algoritmos para alguns casos polinomiais da coloração orientada, demonstramos que um grafo G em que seu grafo subjacente contém um único ciclo de tamanho múltiplo de 3 pode ser colorido por um torneio que contém um único ciclo orientado e que um grafo orientado acíclico que não contém o caminho P de tamanho n + 1 como subgrafo pode ser colorido pelo torneio transitivo Tn. Demonstramos que um grafo G tem Xo(G) <= 3 se e somente se todo vértice de G é um vértice fonte ou um vértice sumidouro ou todo ciclo de G tem tamanho múltiplo de 3 ou G é acíclico e não contém P4 como subgrafo. Demonstramos que se G tem grau máximo 3 e todo vértice fonte de G tem grau máximo 2, então Xo(G) <= 7. Apresentamos uma relação entre o número de casos em que o problema da coloração orientada é NP-completo com o número de casos em que o problema é polinomial. Demonstramos que se Xo(G) <= 3, então Wro(G) = Xo(G). Demonstramos que se G tem grau máximo 3 e cintura 6, então Wro(G) <= 4. Para todo ciclo orientado C demonstramos que Wro(C) <= 5. Para qualquer grafo G com cintura 7 demonstramos que Wro(G) = 3. Apresentamos um algoritmo para a geração de torneios que contêm um único ciclo orientado e uma heurística de aproximação para o problema da coloração orientada que obteve resultados empíricos melhores do que os algoritmos da literatura. Por fim mostramos uma melhoria para abordagem usual de força bruta do problema da coloração orientada.Submitted by Ana Caroline Costa (ana_caroline212@hotmail.com) on 2019-04-10T17:31:40Z No. of bitstreams: 2 Dissertação - Mateus de Paula Ferreira - 2019.pdf: 1468025 bytes, checksum: 41f3ef16d48a8c884594b68167e1820a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-04-11T11:26:40Z (GMT) No. of bitstreams: 2 Dissertação - Mateus de Paula Ferreira - 2019.pdf: 1468025 bytes, checksum: 41f3ef16d48a8c884594b68167e1820a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-04-11T11:26:40Z (GMT). No. of bitstreams: 2 Dissertação - Mateus de Paula Ferreira - 2019.pdf: 1468025 bytes, checksum: 41f3ef16d48a8c884594b68167e1820a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-03-07Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessColoração orientadaNúmero cromático orientadoNúmero clique orientado relativoHomomorfismoTorneioOriented coloringOriented chromatic numberRelative oriented clique numberHomomorphismTournamentCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAlgoritmos e limites para o número cromático orientado em algumas classes de grafosAlgorithms and boundaries for the oriented chromatic number in some classes of graphsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-771226673463364476836717112058112045092075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/df0384e2-de86-4dea-8359-07b17cd740c9/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/db7b02d8-f2f3-42e2-ab70-f9402a8f95d6/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/46def265-df88-4c4a-8dcf-50355574c072/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/e1a7e1b3-8fbb-4bd7-b60d-655be7a2ac8c/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Mateus de Paula Ferreira - 2019.pdfDissertação - Mateus de Paula Ferreira - 2019.pdfapplication/pdf1468025http://repositorio.bc.ufg.br/tede/bitstreams/c7b1b2e3-908d-482a-a03c-f2efbb49ce27/download41f3ef16d48a8c884594b68167e1820aMD55tede/94722019-04-11 08:26:40.282http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9472http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-04-11T11:26:40Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Algoritmos e limites para o número cromático orientado em algumas classes de grafos |
dc.title.alternative.eng.fl_str_mv |
Algorithms and boundaries for the oriented chromatic number in some classes of graphs |
title |
Algoritmos e limites para o número cromático orientado em algumas classes de grafos |
spellingShingle |
Algoritmos e limites para o número cromático orientado em algumas classes de grafos Ferreira, Mateus de Paula Coloração orientada Número cromático orientado Número clique orientado relativo Homomorfismo Torneio Oriented coloring Oriented chromatic number Relative oriented clique number Homomorphism Tournament CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Algoritmos e limites para o número cromático orientado em algumas classes de grafos |
title_full |
Algoritmos e limites para o número cromático orientado em algumas classes de grafos |
title_fullStr |
Algoritmos e limites para o número cromático orientado em algumas classes de grafos |
title_full_unstemmed |
Algoritmos e limites para o número cromático orientado em algumas classes de grafos |
title_sort |
Algoritmos e limites para o número cromático orientado em algumas classes de grafos |
author |
Ferreira, Mateus de Paula |
author_facet |
Ferreira, Mateus de Paula |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Silva, Hebert Coelho da |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4898337852702758 |
dc.contributor.referee1.fl_str_mv |
Silva, Hebert Coelho da |
dc.contributor.referee2.fl_str_mv |
Santana, Márcia Rodrigues Cappelle |
dc.contributor.referee3.fl_str_mv |
Faria, Luerbio |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8875477479719535 |
dc.contributor.author.fl_str_mv |
Ferreira, Mateus de Paula |
contributor_str_mv |
Silva, Hebert Coelho da Silva, Hebert Coelho da Santana, Márcia Rodrigues Cappelle Faria, Luerbio |
dc.subject.por.fl_str_mv |
Coloração orientada Número cromático orientado Número clique orientado relativo Homomorfismo Torneio |
topic |
Coloração orientada Número cromático orientado Número clique orientado relativo Homomorfismo Torneio Oriented coloring Oriented chromatic number Relative oriented clique number Homomorphism Tournament CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Oriented coloring Oriented chromatic number Relative oriented clique number Homomorphism Tournament |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Let G = (V, A) be an oriented graph, xy, zt arcs in A(G), and C a set of k distinct colors. A function c: V(G) in C such that c(x) it's different from c(y) and if c(x) = c(t), then c(y) it's different from c(z) it's called oriented k-coloring. The oriented chromatic number Xo(G) it's the smallest k such that G admits an oriented k-coloring. The relative oriented clique number Wro(G) it's the size of the bigger set of vertices such that any two vertices are connected by a path of size up to 2. In this work we present algorithms for some of the polynomial cases of the oriented coloring, we show that a graph G in which its underlying graph contains a single oriented cycle with a size that's multiple of 3 can be colored by a tournament that contains a single oriented cycle and an acyclic graph that doesn't contain the path P with size n + 1 as a subgraph can be colored by the transitive tournament Tn. We show that a graph G has Xo(G) <= 3 if and only if every vertex of G is a source vertex or a sink vertex or every cycle of G has a size that's multiple of 3 or G is acyclic and doesn't contain the path P4 as a subgraph. We show that if G has maximum degree 3 and every source vertex of G has maximum degree 2, then Xo(G) <= 7. We present a relation between the number of cases in which the oriented coloring problem is NP-complete with the number of cases in which the problem is polynomial. We show that if Xo(G) <= 3, then Wro(G) = Xo(G). We show that if G has maximum degree 3 and girth 6, then Wro(G) <= 4. For every oriented cycle C we show that Wro(C) <= 5. For any oriented graph G we show that if G has girth 7, then Wro(G) = 3. We present an algorithm for the generation of tournaments that contains a single oriented cycle and an approximation heuristic for the oriented coloring problem which presents better empirical results than those in the literature. Lastly we show a improvement for the usual brute force approach to the oriented coloring problem. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-04-11T11:26:40Z |
dc.date.issued.fl_str_mv |
2019-03-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FERREIRA, M. P. Algoritmos e limites para o número cromático orientado em algumas classes de grafos. 2019. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9472 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000011vp |
identifier_str_mv |
FERREIRA, M. P. Algoritmos e limites para o número cromático orientado em algumas classes de grafos. 2019. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/00130000011vp |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/9472 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-3303550325223384799 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-7712266734633644768 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/df0384e2-de86-4dea-8359-07b17cd740c9/download http://repositorio.bc.ufg.br/tede/bitstreams/db7b02d8-f2f3-42e2-ab70-f9402a8f95d6/download http://repositorio.bc.ufg.br/tede/bitstreams/46def265-df88-4c4a-8dcf-50355574c072/download http://repositorio.bc.ufg.br/tede/bitstreams/e1a7e1b3-8fbb-4bd7-b60d-655be7a2ac8c/download http://repositorio.bc.ufg.br/tede/bitstreams/c7b1b2e3-908d-482a-a03c-f2efbb49ce27/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 41f3ef16d48a8c884594b68167e1820a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172519481573376 |