Algoritmos e limites para o número cromático orientado em algumas classes de grafos

Detalhes bibliográficos
Autor(a) principal: Ferreira, Mateus de Paula
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/00130000011vp
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/9472
Resumo: Let G = (V, A) be an oriented graph, xy, zt arcs in A(G), and C a set of k distinct colors. A function c: V(G) in C such that c(x) it's different from c(y) and if c(x) = c(t), then c(y) it's different from c(z) it's called oriented k-coloring. The oriented chromatic number Xo(G) it's the smallest k such that G admits an oriented k-coloring. The relative oriented clique number Wro(G) it's the size of the bigger set of vertices such that any two vertices are connected by a path of size up to 2. In this work we present algorithms for some of the polynomial cases of the oriented coloring, we show that a graph G in which its underlying graph contains a single oriented cycle with a size that's multiple of 3 can be colored by a tournament that contains a single oriented cycle and an acyclic graph that doesn't contain the path P with size n + 1 as a subgraph can be colored by the transitive tournament Tn. We show that a graph G has Xo(G) <= 3 if and only if every vertex of G is a source vertex or a sink vertex or every cycle of G has a size that's multiple of 3 or G is acyclic and doesn't contain the path P4 as a subgraph. We show that if G has maximum degree 3 and every source vertex of G has maximum degree 2, then Xo(G) <= 7. We present a relation between the number of cases in which the oriented coloring problem is NP-complete with the number of cases in which the problem is polynomial. We show that if Xo(G) <= 3, then Wro(G) = Xo(G). We show that if G has maximum degree 3 and girth 6, then Wro(G) <= 4. For every oriented cycle C we show that Wro(C) <= 5. For any oriented graph G we show that if G has girth 7, then Wro(G) = 3. We present an algorithm for the generation of tournaments that contains a single oriented cycle and an approximation heuristic for the oriented coloring problem which presents better empirical results than those in the literature. Lastly we show a improvement for the usual brute force approach to the oriented coloring problem.
id UFG-2_cbc0d8d0bf264e237239e0041e42dba3
oai_identifier_str oai:repositorio.bc.ufg.br:tede/9472
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Silva, Hebert Coelho dahttp://lattes.cnpq.br/4898337852702758Silva, Hebert Coelho daSantana, Márcia Rodrigues CappelleFaria, Luerbiohttp://lattes.cnpq.br/8875477479719535Ferreira, Mateus de Paula2019-04-11T11:26:40Z2019-03-07FERREIRA, M. P. Algoritmos e limites para o número cromático orientado em algumas classes de grafos. 2019. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9472ark:/38995/00130000011vpLet G = (V, A) be an oriented graph, xy, zt arcs in A(G), and C a set of k distinct colors. A function c: V(G) in C such that c(x) it's different from c(y) and if c(x) = c(t), then c(y) it's different from c(z) it's called oriented k-coloring. The oriented chromatic number Xo(G) it's the smallest k such that G admits an oriented k-coloring. The relative oriented clique number Wro(G) it's the size of the bigger set of vertices such that any two vertices are connected by a path of size up to 2. In this work we present algorithms for some of the polynomial cases of the oriented coloring, we show that a graph G in which its underlying graph contains a single oriented cycle with a size that's multiple of 3 can be colored by a tournament that contains a single oriented cycle and an acyclic graph that doesn't contain the path P with size n + 1 as a subgraph can be colored by the transitive tournament Tn. We show that a graph G has Xo(G) <= 3 if and only if every vertex of G is a source vertex or a sink vertex or every cycle of G has a size that's multiple of 3 or G is acyclic and doesn't contain the path P4 as a subgraph. We show that if G has maximum degree 3 and every source vertex of G has maximum degree 2, then Xo(G) <= 7. We present a relation between the number of cases in which the oriented coloring problem is NP-complete with the number of cases in which the problem is polynomial. We show that if Xo(G) <= 3, then Wro(G) = Xo(G). We show that if G has maximum degree 3 and girth 6, then Wro(G) <= 4. For every oriented cycle C we show that Wro(C) <= 5. For any oriented graph G we show that if G has girth 7, then Wro(G) = 3. We present an algorithm for the generation of tournaments that contains a single oriented cycle and an approximation heuristic for the oriented coloring problem which presents better empirical results than those in the literature. Lastly we show a improvement for the usual brute force approach to the oriented coloring problem.Seja G = (V, A) um grafo orientado, xy, zt arcos em A(G), e C um conjunto com k cores distintas. Uma função c: V(G) em C tal que c(x) é diferente de c(y) e se c(x) = c(t), então c(y) é diferente de c(z) é chamada de k-coloração orientada. O número cromático orientado Xo(G) é o menor k tal que G admite uma k-coloração orientada. O número clique orientado relativo Wro(G) é o tamanho do maior conjunto de vértices em que quaisquer dois vértices são conectados por um caminho de tamanho até 2. Neste trabalho, apresentamos algoritmos para alguns casos polinomiais da coloração orientada, demonstramos que um grafo G em que seu grafo subjacente contém um único ciclo de tamanho múltiplo de 3 pode ser colorido por um torneio que contém um único ciclo orientado e que um grafo orientado acíclico que não contém o caminho P de tamanho n + 1 como subgrafo pode ser colorido pelo torneio transitivo Tn. Demonstramos que um grafo G tem Xo(G) <= 3 se e somente se todo vértice de G é um vértice fonte ou um vértice sumidouro ou todo ciclo de G tem tamanho múltiplo de 3 ou G é acíclico e não contém P4 como subgrafo. Demonstramos que se G tem grau máximo 3 e todo vértice fonte de G tem grau máximo 2, então Xo(G) <= 7. Apresentamos uma relação entre o número de casos em que o problema da coloração orientada é NP-completo com o número de casos em que o problema é polinomial. Demonstramos que se Xo(G) <= 3, então Wro(G) = Xo(G). Demonstramos que se G tem grau máximo 3 e cintura 6, então Wro(G) <= 4. Para todo ciclo orientado C demonstramos que Wro(C) <= 5. Para qualquer grafo G com cintura 7 demonstramos que Wro(G) = 3. Apresentamos um algoritmo para a geração de torneios que contêm um único ciclo orientado e uma heurística de aproximação para o problema da coloração orientada que obteve resultados empíricos melhores do que os algoritmos da literatura. Por fim mostramos uma melhoria para abordagem usual de força bruta do problema da coloração orientada.Submitted by Ana Caroline Costa (ana_caroline212@hotmail.com) on 2019-04-10T17:31:40Z No. of bitstreams: 2 Dissertação - Mateus de Paula Ferreira - 2019.pdf: 1468025 bytes, checksum: 41f3ef16d48a8c884594b68167e1820a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-04-11T11:26:40Z (GMT) No. of bitstreams: 2 Dissertação - Mateus de Paula Ferreira - 2019.pdf: 1468025 bytes, checksum: 41f3ef16d48a8c884594b68167e1820a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-04-11T11:26:40Z (GMT). No. of bitstreams: 2 Dissertação - Mateus de Paula Ferreira - 2019.pdf: 1468025 bytes, checksum: 41f3ef16d48a8c884594b68167e1820a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-03-07Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessColoração orientadaNúmero cromático orientadoNúmero clique orientado relativoHomomorfismoTorneioOriented coloringOriented chromatic numberRelative oriented clique numberHomomorphismTournamentCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAlgoritmos e limites para o número cromático orientado em algumas classes de grafosAlgorithms and boundaries for the oriented chromatic number in some classes of graphsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-771226673463364476836717112058112045092075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/df0384e2-de86-4dea-8359-07b17cd740c9/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/db7b02d8-f2f3-42e2-ab70-f9402a8f95d6/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/46def265-df88-4c4a-8dcf-50355574c072/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/e1a7e1b3-8fbb-4bd7-b60d-655be7a2ac8c/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Mateus de Paula Ferreira - 2019.pdfDissertação - Mateus de Paula Ferreira - 2019.pdfapplication/pdf1468025http://repositorio.bc.ufg.br/tede/bitstreams/c7b1b2e3-908d-482a-a03c-f2efbb49ce27/download41f3ef16d48a8c884594b68167e1820aMD55tede/94722019-04-11 08:26:40.282http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9472http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-04-11T11:26:40Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Algoritmos e limites para o número cromático orientado em algumas classes de grafos
dc.title.alternative.eng.fl_str_mv Algorithms and boundaries for the oriented chromatic number in some classes of graphs
title Algoritmos e limites para o número cromático orientado em algumas classes de grafos
spellingShingle Algoritmos e limites para o número cromático orientado em algumas classes de grafos
Ferreira, Mateus de Paula
Coloração orientada
Número cromático orientado
Número clique orientado relativo
Homomorfismo
Torneio
Oriented coloring
Oriented chromatic number
Relative oriented clique number
Homomorphism
Tournament
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Algoritmos e limites para o número cromático orientado em algumas classes de grafos
title_full Algoritmos e limites para o número cromático orientado em algumas classes de grafos
title_fullStr Algoritmos e limites para o número cromático orientado em algumas classes de grafos
title_full_unstemmed Algoritmos e limites para o número cromático orientado em algumas classes de grafos
title_sort Algoritmos e limites para o número cromático orientado em algumas classes de grafos
author Ferreira, Mateus de Paula
author_facet Ferreira, Mateus de Paula
author_role author
dc.contributor.advisor1.fl_str_mv Silva, Hebert Coelho da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4898337852702758
dc.contributor.referee1.fl_str_mv Silva, Hebert Coelho da
dc.contributor.referee2.fl_str_mv Santana, Márcia Rodrigues Cappelle
dc.contributor.referee3.fl_str_mv Faria, Luerbio
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8875477479719535
dc.contributor.author.fl_str_mv Ferreira, Mateus de Paula
contributor_str_mv Silva, Hebert Coelho da
Silva, Hebert Coelho da
Santana, Márcia Rodrigues Cappelle
Faria, Luerbio
dc.subject.por.fl_str_mv Coloração orientada
Número cromático orientado
Número clique orientado relativo
Homomorfismo
Torneio
topic Coloração orientada
Número cromático orientado
Número clique orientado relativo
Homomorfismo
Torneio
Oriented coloring
Oriented chromatic number
Relative oriented clique number
Homomorphism
Tournament
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Oriented coloring
Oriented chromatic number
Relative oriented clique number
Homomorphism
Tournament
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Let G = (V, A) be an oriented graph, xy, zt arcs in A(G), and C a set of k distinct colors. A function c: V(G) in C such that c(x) it's different from c(y) and if c(x) = c(t), then c(y) it's different from c(z) it's called oriented k-coloring. The oriented chromatic number Xo(G) it's the smallest k such that G admits an oriented k-coloring. The relative oriented clique number Wro(G) it's the size of the bigger set of vertices such that any two vertices are connected by a path of size up to 2. In this work we present algorithms for some of the polynomial cases of the oriented coloring, we show that a graph G in which its underlying graph contains a single oriented cycle with a size that's multiple of 3 can be colored by a tournament that contains a single oriented cycle and an acyclic graph that doesn't contain the path P with size n + 1 as a subgraph can be colored by the transitive tournament Tn. We show that a graph G has Xo(G) <= 3 if and only if every vertex of G is a source vertex or a sink vertex or every cycle of G has a size that's multiple of 3 or G is acyclic and doesn't contain the path P4 as a subgraph. We show that if G has maximum degree 3 and every source vertex of G has maximum degree 2, then Xo(G) <= 7. We present a relation between the number of cases in which the oriented coloring problem is NP-complete with the number of cases in which the problem is polynomial. We show that if Xo(G) <= 3, then Wro(G) = Xo(G). We show that if G has maximum degree 3 and girth 6, then Wro(G) <= 4. For every oriented cycle C we show that Wro(C) <= 5. For any oriented graph G we show that if G has girth 7, then Wro(G) = 3. We present an algorithm for the generation of tournaments that contains a single oriented cycle and an approximation heuristic for the oriented coloring problem which presents better empirical results than those in the literature. Lastly we show a improvement for the usual brute force approach to the oriented coloring problem.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-04-11T11:26:40Z
dc.date.issued.fl_str_mv 2019-03-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERREIRA, M. P. Algoritmos e limites para o número cromático orientado em algumas classes de grafos. 2019. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/9472
dc.identifier.dark.fl_str_mv ark:/38995/00130000011vp
identifier_str_mv FERREIRA, M. P. Algoritmos e limites para o número cromático orientado em algumas classes de grafos. 2019. 90 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/00130000011vp
url http://repositorio.bc.ufg.br/tede/handle/tede/9472
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/df0384e2-de86-4dea-8359-07b17cd740c9/download
http://repositorio.bc.ufg.br/tede/bitstreams/db7b02d8-f2f3-42e2-ab70-f9402a8f95d6/download
http://repositorio.bc.ufg.br/tede/bitstreams/46def265-df88-4c4a-8dcf-50355574c072/download
http://repositorio.bc.ufg.br/tede/bitstreams/e1a7e1b3-8fbb-4bd7-b60d-655be7a2ac8c/download
http://repositorio.bc.ufg.br/tede/bitstreams/c7b1b2e3-908d-482a-a03c-f2efbb49ce27/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
41f3ef16d48a8c884594b68167e1820a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172519481573376