Invariantes geométricos de pares de curvas planares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000001923 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/10440 |
Resumo: | The objective of this work is to study the affine invariants, by affine transformations, projective invariants, by projective transformations, and conforming invariants, by Mobius transformations, for certain pairs of curves. Basically we will have these three cases: pair of plane curves having a tangent in common at the two points of quadratic tangency, pair of plane curves intersecting at a common point, and finally, pair of tangent plane curves at a common point. |
id |
UFG-2_cd8082881c46ed13c1b98b71e43db4e5 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/10440 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Garcia, Ronaldo Alveshttp://lattes.cnpq.br/5680428710939826Garcia, Ronaldo AlvesSilva, Kaye Oliveira daCraizer, Marcoshttp://lattes.cnpq.br/6905733128410847Pádua, Nathanni Vieira de2020-03-18T10:26:02Z2020-02-17PÁDUA, N. V. Invariantes geométricos de pares de curvas planares. 2020. 105 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2020.http://repositorio.bc.ufg.br/tede/handle/tede/10440ark:/38995/0013000001923The objective of this work is to study the affine invariants, by affine transformations, projective invariants, by projective transformations, and conforming invariants, by Mobius transformations, for certain pairs of curves. Basically we will have these three cases: pair of plane curves having a tangent in common at the two points of quadratic tangency, pair of plane curves intersecting at a common point, and finally, pair of tangent plane curves at a common point.O objetivo deste trabalho é estudar os invariantes afins, por transformações afins, invariantes projetivos, por transformações projetivas, e invariantes conformes, por transformações de Mobius, pra certos pares de curvas. Basicamente teremos estes três casos: par de curvas planas tendo uma tangente em comum nos dois pontos de tangência quadrática, par de curvas planas intersectando em um ponto comum, e por fim, par de curvas planas tangentes em um ponto em comum.Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2020-03-16T22:39:31Z No. of bitstreams: 2 Comprovante Nathanni Veira de Pádua.pdf: 110186 bytes, checksum: ceaab264fa62f471012d7fa344950237 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Voce inseriu o comprovante no lugar da dissertacao. on 2020-03-17T10:51:25Z (GMT)Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2020-03-17T18:00:39Z No. of bitstreams: 2 Dissertação - Nathanni Vieira de Pádua - 2020.pdf: 1526973 bytes, checksum: b7d2e08dc4265f31dfa4d86e29d291be (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2020-03-18T10:26:02Z (GMT) No. of bitstreams: 2 Dissertação - Nathanni Vieira de Pádua - 2020.pdf: 1526973 bytes, checksum: b7d2e08dc4265f31dfa4d86e29d291be (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2020-03-18T10:26:02Z (GMT). No. of bitstreams: 2 Dissertação - Nathanni Vieira de Pádua - 2020.pdf: 1526973 bytes, checksum: b7d2e08dc4265f31dfa4d86e29d291be (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2020-02-17Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessInvariantesGeometria afimGeometria projetivaGeometria conformeTransformaçõesInvariantsAffine geometryProjective geometryConformal geometryTransformationsCIENCIAS EXATAS E DA TERRA::MATEMATICAInvariantes geométricos de pares de curvas planaresGeometric invariants of pairs of planar curvesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-7090823417984401694-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/9fcd67a6-cb3c-48c1-bad0-45e5dd66e67a/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/fdf0c184-e3b3-4625-bfa1-c0a91eeb309e/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/543c3116-0a08-4224-8276-108ecc155d8c/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/8361b935-226c-4eef-bd6a-716ffbb41563/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Nathanni Vieira de Pádua - 2020.pdfDissertação - Nathanni Vieira de Pádua - 2020.pdfapplication/pdf1526973http://repositorio.bc.ufg.br/tede/bitstreams/94a3044f-a48b-44f4-b574-b81f8c04be91/downloadb7d2e08dc4265f31dfa4d86e29d291beMD55tede/104402020-03-18 07:26:02.265http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10440http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2020-03-18T10:26:02Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Invariantes geométricos de pares de curvas planares |
dc.title.alternative.eng.fl_str_mv |
Geometric invariants of pairs of planar curves |
title |
Invariantes geométricos de pares de curvas planares |
spellingShingle |
Invariantes geométricos de pares de curvas planares Pádua, Nathanni Vieira de Invariantes Geometria afim Geometria projetiva Geometria conforme Transformações Invariants Affine geometry Projective geometry Conformal geometry Transformations CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Invariantes geométricos de pares de curvas planares |
title_full |
Invariantes geométricos de pares de curvas planares |
title_fullStr |
Invariantes geométricos de pares de curvas planares |
title_full_unstemmed |
Invariantes geométricos de pares de curvas planares |
title_sort |
Invariantes geométricos de pares de curvas planares |
author |
Pádua, Nathanni Vieira de |
author_facet |
Pádua, Nathanni Vieira de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Garcia, Ronaldo Alves |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5680428710939826 |
dc.contributor.referee1.fl_str_mv |
Garcia, Ronaldo Alves |
dc.contributor.referee2.fl_str_mv |
Silva, Kaye Oliveira da |
dc.contributor.referee3.fl_str_mv |
Craizer, Marcos |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6905733128410847 |
dc.contributor.author.fl_str_mv |
Pádua, Nathanni Vieira de |
contributor_str_mv |
Garcia, Ronaldo Alves Garcia, Ronaldo Alves Silva, Kaye Oliveira da Craizer, Marcos |
dc.subject.por.fl_str_mv |
Invariantes Geometria afim Geometria projetiva Geometria conforme Transformações |
topic |
Invariantes Geometria afim Geometria projetiva Geometria conforme Transformações Invariants Affine geometry Projective geometry Conformal geometry Transformations CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Invariants Affine geometry Projective geometry Conformal geometry Transformations |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
The objective of this work is to study the affine invariants, by affine transformations, projective invariants, by projective transformations, and conforming invariants, by Mobius transformations, for certain pairs of curves. Basically we will have these three cases: pair of plane curves having a tangent in common at the two points of quadratic tangency, pair of plane curves intersecting at a common point, and finally, pair of tangent plane curves at a common point. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-03-18T10:26:02Z |
dc.date.issued.fl_str_mv |
2020-02-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PÁDUA, N. V. Invariantes geométricos de pares de curvas planares. 2020. 105 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2020. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/10440 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000001923 |
identifier_str_mv |
PÁDUA, N. V. Invariantes geométricos de pares de curvas planares. 2020. 105 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2020. ark:/38995/0013000001923 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/10440 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.relation.sponsorship.fl_str_mv |
-2555911436985713659 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/9fcd67a6-cb3c-48c1-bad0-45e5dd66e67a/download http://repositorio.bc.ufg.br/tede/bitstreams/fdf0c184-e3b3-4625-bfa1-c0a91eeb309e/download http://repositorio.bc.ufg.br/tede/bitstreams/543c3116-0a08-4224-8276-108ecc155d8c/download http://repositorio.bc.ufg.br/tede/bitstreams/8361b935-226c-4eef-bd6a-716ffbb41563/download http://repositorio.bc.ufg.br/tede/bitstreams/94a3044f-a48b-44f4-b574-b81f8c04be91/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e b7d2e08dc4265f31dfa4d86e29d291be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172522747887616 |