Invariantes geométricos de pares de curvas planares

Detalhes bibliográficos
Autor(a) principal: Pádua, Nathanni Vieira de
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000001923
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/10440
Resumo: The objective of this work is to study the affine invariants, by affine transformations, projective invariants, by projective transformations, and conforming invariants, by Mobius transformations, for certain pairs of curves. Basically we will have these three cases: pair of plane curves having a tangent in common at the two points of quadratic tangency, pair of plane curves intersecting at a common point, and finally, pair of tangent plane curves at a common point.
id UFG-2_cd8082881c46ed13c1b98b71e43db4e5
oai_identifier_str oai:repositorio.bc.ufg.br:tede/10440
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Garcia, Ronaldo Alveshttp://lattes.cnpq.br/5680428710939826Garcia, Ronaldo AlvesSilva, Kaye Oliveira daCraizer, Marcoshttp://lattes.cnpq.br/6905733128410847Pádua, Nathanni Vieira de2020-03-18T10:26:02Z2020-02-17PÁDUA, N. V. Invariantes geométricos de pares de curvas planares. 2020. 105 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2020.http://repositorio.bc.ufg.br/tede/handle/tede/10440ark:/38995/0013000001923The objective of this work is to study the affine invariants, by affine transformations, projective invariants, by projective transformations, and conforming invariants, by Mobius transformations, for certain pairs of curves. Basically we will have these three cases: pair of plane curves having a tangent in common at the two points of quadratic tangency, pair of plane curves intersecting at a common point, and finally, pair of tangent plane curves at a common point.O objetivo deste trabalho é estudar os invariantes afins, por transformações afins, invariantes projetivos, por transformações projetivas, e invariantes conformes, por transformações de Mobius, pra certos pares de curvas. Basicamente teremos estes três casos: par de curvas planas tendo uma tangente em comum nos dois pontos de tangência quadrática, par de curvas planas intersectando em um ponto comum, e por fim, par de curvas planas tangentes em um ponto em comum.Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2020-03-16T22:39:31Z No. of bitstreams: 2 Comprovante Nathanni Veira de Pádua.pdf: 110186 bytes, checksum: ceaab264fa62f471012d7fa344950237 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Voce inseriu o comprovante no lugar da dissertacao. on 2020-03-17T10:51:25Z (GMT)Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2020-03-17T18:00:39Z No. of bitstreams: 2 Dissertação - Nathanni Vieira de Pádua - 2020.pdf: 1526973 bytes, checksum: b7d2e08dc4265f31dfa4d86e29d291be (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2020-03-18T10:26:02Z (GMT) No. of bitstreams: 2 Dissertação - Nathanni Vieira de Pádua - 2020.pdf: 1526973 bytes, checksum: b7d2e08dc4265f31dfa4d86e29d291be (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2020-03-18T10:26:02Z (GMT). No. of bitstreams: 2 Dissertação - Nathanni Vieira de Pádua - 2020.pdf: 1526973 bytes, checksum: b7d2e08dc4265f31dfa4d86e29d291be (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2020-02-17Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessInvariantesGeometria afimGeometria projetivaGeometria conformeTransformaçõesInvariantsAffine geometryProjective geometryConformal geometryTransformationsCIENCIAS EXATAS E DA TERRA::MATEMATICAInvariantes geométricos de pares de curvas planaresGeometric invariants of pairs of planar curvesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-7090823417984401694-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/9fcd67a6-cb3c-48c1-bad0-45e5dd66e67a/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/fdf0c184-e3b3-4625-bfa1-c0a91eeb309e/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/543c3116-0a08-4224-8276-108ecc155d8c/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/8361b935-226c-4eef-bd6a-716ffbb41563/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Nathanni Vieira de Pádua - 2020.pdfDissertação - Nathanni Vieira de Pádua - 2020.pdfapplication/pdf1526973http://repositorio.bc.ufg.br/tede/bitstreams/94a3044f-a48b-44f4-b574-b81f8c04be91/downloadb7d2e08dc4265f31dfa4d86e29d291beMD55tede/104402020-03-18 07:26:02.265http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10440http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2020-03-18T10:26:02Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Invariantes geométricos de pares de curvas planares
dc.title.alternative.eng.fl_str_mv Geometric invariants of pairs of planar curves
title Invariantes geométricos de pares de curvas planares
spellingShingle Invariantes geométricos de pares de curvas planares
Pádua, Nathanni Vieira de
Invariantes
Geometria afim
Geometria projetiva
Geometria conforme
Transformações
Invariants
Affine geometry
Projective geometry
Conformal geometry
Transformations
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Invariantes geométricos de pares de curvas planares
title_full Invariantes geométricos de pares de curvas planares
title_fullStr Invariantes geométricos de pares de curvas planares
title_full_unstemmed Invariantes geométricos de pares de curvas planares
title_sort Invariantes geométricos de pares de curvas planares
author Pádua, Nathanni Vieira de
author_facet Pádua, Nathanni Vieira de
author_role author
dc.contributor.advisor1.fl_str_mv Garcia, Ronaldo Alves
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5680428710939826
dc.contributor.referee1.fl_str_mv Garcia, Ronaldo Alves
dc.contributor.referee2.fl_str_mv Silva, Kaye Oliveira da
dc.contributor.referee3.fl_str_mv Craizer, Marcos
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6905733128410847
dc.contributor.author.fl_str_mv Pádua, Nathanni Vieira de
contributor_str_mv Garcia, Ronaldo Alves
Garcia, Ronaldo Alves
Silva, Kaye Oliveira da
Craizer, Marcos
dc.subject.por.fl_str_mv Invariantes
Geometria afim
Geometria projetiva
Geometria conforme
Transformações
topic Invariantes
Geometria afim
Geometria projetiva
Geometria conforme
Transformações
Invariants
Affine geometry
Projective geometry
Conformal geometry
Transformations
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Invariants
Affine geometry
Projective geometry
Conformal geometry
Transformations
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description The objective of this work is to study the affine invariants, by affine transformations, projective invariants, by projective transformations, and conforming invariants, by Mobius transformations, for certain pairs of curves. Basically we will have these three cases: pair of plane curves having a tangent in common at the two points of quadratic tangency, pair of plane curves intersecting at a common point, and finally, pair of tangent plane curves at a common point.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-03-18T10:26:02Z
dc.date.issued.fl_str_mv 2020-02-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PÁDUA, N. V. Invariantes geométricos de pares de curvas planares. 2020. 105 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2020.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/10440
dc.identifier.dark.fl_str_mv ark:/38995/0013000001923
identifier_str_mv PÁDUA, N. V. Invariantes geométricos de pares de curvas planares. 2020. 105 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2020.
ark:/38995/0013000001923
url http://repositorio.bc.ufg.br/tede/handle/tede/10440
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/9fcd67a6-cb3c-48c1-bad0-45e5dd66e67a/download
http://repositorio.bc.ufg.br/tede/bitstreams/fdf0c184-e3b3-4625-bfa1-c0a91eeb309e/download
http://repositorio.bc.ufg.br/tede/bitstreams/543c3116-0a08-4224-8276-108ecc155d8c/download
http://repositorio.bc.ufg.br/tede/bitstreams/8361b935-226c-4eef-bd6a-716ffbb41563/download
http://repositorio.bc.ufg.br/tede/bitstreams/94a3044f-a48b-44f4-b574-b81f8c04be91/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
b7d2e08dc4265f31dfa4d86e29d291be
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172522747887616