Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000007kxm |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/8635 |
Resumo: | In this work we study two problems: the first one involving the prescribed Schouten tensor and the second one the prescribed curvature operator. The first problem was inspired by the works Deturck and Yang, [6], which consist of: Given a tensor T of order 2 in the pseudo-Euclidean space ( ,g), n ≥ 3, with coordinates x = ( ), and metric g, where , = ±1, find a metric as = g, such that the tensor of Schouten be T. The second problem is the problem of the prescribed curvature tensor consist of: Let Euclidean space ( ;g), n ≥ 3, with coordinates x = ( ), is , the R a tensor of order 4 of the form , where T = , with differentiable functions.We want to find a metric = g, such that = , where is the tensor curvature of the metric . Considering that the solutions are invariant by translation and rotation, we find necessary and sufficient conditions for both problems to have solution. |
id |
UFG-2_d7c50d3ea3d019798512f89477e531a6 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/8635 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pina, Romildo da SilvaCorro, Armando Mauro VasquezPieterzack, Mauricio DonizetiXia, ChangyuLima, Barnabé Pessoahttp://lattes.cnpq.br/0735780612586466Carvalho, Marcos Tulio Alves de2018-07-03T15:18:43Z2018-06-12Carvalho, M. T. A. Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas. 2018. 68 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/8635ark:/38995/0013000007kxmIn this work we study two problems: the first one involving the prescribed Schouten tensor and the second one the prescribed curvature operator. The first problem was inspired by the works Deturck and Yang, [6], which consist of: Given a tensor T of order 2 in the pseudo-Euclidean space ( ,g), n ≥ 3, with coordinates x = ( ), and metric g, where , = ±1, find a metric as = g, such that the tensor of Schouten be T. The second problem is the problem of the prescribed curvature tensor consist of: Let Euclidean space ( ;g), n ≥ 3, with coordinates x = ( ), is , the R a tensor of order 4 of the form , where T = , with differentiable functions.We want to find a metric = g, such that = , where is the tensor curvature of the metric . Considering that the solutions are invariant by translation and rotation, we find necessary and sufficient conditions for both problems to have solution.Neste trabalho estudamos dois problemas: o primeiro envolvendo o tensor de Schouten prescrito e o segundo o tensor curvatura prescrito. O primeiro problema foi inspirado no trabalho de Deturck e Yang, [6], que consiste em: Dado um tensor T de ordem 2 no espaço pseudo-Euclidiano ( ;g), n ≥ 3, com coordenadas x = ( ), e métrica g, onde , = ±1, encontrar uma métrica conforme = g, tal que o tensor de Schouten da métrica seja T. O segundo problema é o problema do tensor curvatura prescrito que consiste em: Seja o espaço Euclidiano ( ;g), n ≥ 3, com coordenadas x = ( ), e , e R um tensor de ordem 4 da forma onde T = , com funções diferenciáveis. Queremos encontrar uma métrica = g, tal que = , onde é o tensor curvatura da métrica . Considerando que as soluções sejam invariantes por translação e rotação, encontramos condições necessárias e suficientes para que ambos os problemas tenham solução.Submitted by Erika Demachki (erikademachki@gmail.com) on 2018-06-29T18:43:00Z No. of bitstreams: 2 Tese - Marcos Tulio Alves de Carvalho - 2018.pdf: 2579945 bytes, checksum: 29a08a3db199f6061cf6020d90ce9213 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:18:43Z (GMT) No. of bitstreams: 2 Tese - Marcos Tulio Alves de Carvalho - 2018.pdf: 2579945 bytes, checksum: 29a08a3db199f6061cf6020d90ce9213 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-07-03T15:18:43Z (GMT). No. of bitstreams: 2 Tese - Marcos Tulio Alves de Carvalho - 2018.pdf: 2579945 bytes, checksum: 29a08a3db199f6061cf6020d90ce9213 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-06-12Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTensor de SchoutenOperador curvaturaSchouten tensorCurvature operatorMATEMATICA::GEOMETRIA E TOPOLOGIASoluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planasInvariant solutions for the Schouten tensor and tensor curvature prescribed in locally conformally flat variesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-42687775123351520156357880884991220629-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/2b4a3a17-567c-4107-a7bc-8e1684b61e5e/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/a70ed365-3e9e-4ca2-a6c9-8245c24ef139/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/19c3e97c-cccc-46b8-a3f4-3f171f79e130/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/ac41f7e2-0fe7-4fd7-8cad-be36cbd01998/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Marcos Tulio Alves de Carvalho - 2018.pdfTese - Marcos Tulio Alves de Carvalho - 2018.pdfapplication/pdf2579945http://repositorio.bc.ufg.br/tede/bitstreams/936deb2e-ff62-490f-a169-6b73c4e8565d/download29a08a3db199f6061cf6020d90ce9213MD55tede/86352018-07-03 12:18:43.232http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8635http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-07-03T15:18:43Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas |
dc.title.alternative.eng.fl_str_mv |
Invariant solutions for the Schouten tensor and tensor curvature prescribed in locally conformally flat varies |
title |
Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas |
spellingShingle |
Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas Carvalho, Marcos Tulio Alves de Tensor de Schouten Operador curvatura Schouten tensor Curvature operator MATEMATICA::GEOMETRIA E TOPOLOGIA |
title_short |
Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas |
title_full |
Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas |
title_fullStr |
Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas |
title_full_unstemmed |
Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas |
title_sort |
Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas |
author |
Carvalho, Marcos Tulio Alves de |
author_facet |
Carvalho, Marcos Tulio Alves de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pina, Romildo da Silva |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2675728978857991 |
dc.contributor.referee1.fl_str_mv |
Pina, Romildo da Silva |
dc.contributor.referee2.fl_str_mv |
Corro, Armando Mauro Vasquez |
dc.contributor.referee3.fl_str_mv |
Pieterzack, Mauricio Donizeti |
dc.contributor.referee4.fl_str_mv |
Xia, Changyu |
dc.contributor.referee5.fl_str_mv |
Lima, Barnabé Pessoa |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0735780612586466 |
dc.contributor.author.fl_str_mv |
Carvalho, Marcos Tulio Alves de |
contributor_str_mv |
Pina, Romildo da Silva Pina, Romildo da Silva Corro, Armando Mauro Vasquez Pieterzack, Mauricio Donizeti Xia, Changyu Lima, Barnabé Pessoa |
dc.subject.por.fl_str_mv |
Tensor de Schouten Operador curvatura |
topic |
Tensor de Schouten Operador curvatura Schouten tensor Curvature operator MATEMATICA::GEOMETRIA E TOPOLOGIA |
dc.subject.eng.fl_str_mv |
Schouten tensor Curvature operator |
dc.subject.cnpq.fl_str_mv |
MATEMATICA::GEOMETRIA E TOPOLOGIA |
description |
In this work we study two problems: the first one involving the prescribed Schouten tensor and the second one the prescribed curvature operator. The first problem was inspired by the works Deturck and Yang, [6], which consist of: Given a tensor T of order 2 in the pseudo-Euclidean space ( ,g), n ≥ 3, with coordinates x = ( ), and metric g, where , = ±1, find a metric as = g, such that the tensor of Schouten be T. The second problem is the problem of the prescribed curvature tensor consist of: Let Euclidean space ( ;g), n ≥ 3, with coordinates x = ( ), is , the R a tensor of order 4 of the form , where T = , with differentiable functions.We want to find a metric = g, such that = , where is the tensor curvature of the metric . Considering that the solutions are invariant by translation and rotation, we find necessary and sufficient conditions for both problems to have solution. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-07-03T15:18:43Z |
dc.date.issued.fl_str_mv |
2018-06-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Carvalho, M. T. A. Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas. 2018. 68 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/8635 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000007kxm |
identifier_str_mv |
Carvalho, M. T. A. Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas. 2018. 68 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018. ark:/38995/0013000007kxm |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/8635 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
6357880884991220629 |
dc.relation.sponsorship.fl_str_mv |
-961409807440757778 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/2b4a3a17-567c-4107-a7bc-8e1684b61e5e/download http://repositorio.bc.ufg.br/tede/bitstreams/a70ed365-3e9e-4ca2-a6c9-8245c24ef139/download http://repositorio.bc.ufg.br/tede/bitstreams/19c3e97c-cccc-46b8-a3f4-3f171f79e130/download http://repositorio.bc.ufg.br/tede/bitstreams/ac41f7e2-0fe7-4fd7-8cad-be36cbd01998/download http://repositorio.bc.ufg.br/tede/bitstreams/936deb2e-ff62-490f-a169-6b73c4e8565d/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 29a08a3db199f6061cf6020d90ce9213 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1813816924826501120 |