Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas

Detalhes bibliográficos
Autor(a) principal: Carvalho, Marcos Tulio Alves de
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000007kxm
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/8635
Resumo: In this work we study two problems: the first one involving the prescribed Schouten tensor and the second one the prescribed curvature operator. The first problem was inspired by the works Deturck and Yang, [6], which consist of: Given a tensor T of order 2 in the pseudo-Euclidean space ( ,g), n ≥ 3, with coordinates x = ( ), and metric g, where , = ±1, find a metric as = g, such that the tensor of Schouten be T. The second problem is the problem of the prescribed curvature tensor consist of: Let Euclidean space ( ;g), n ≥ 3, with coordinates x = ( ), is , the R a tensor of order 4 of the form , where T = , with differentiable functions.We want to find a metric = g, such that = , where is the tensor curvature of the metric . Considering that the solutions are invariant by translation and rotation, we find necessary and sufficient conditions for both problems to have solution.
id UFG-2_d7c50d3ea3d019798512f89477e531a6
oai_identifier_str oai:repositorio.bc.ufg.br:tede/8635
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pina, Romildo da SilvaCorro, Armando Mauro VasquezPieterzack, Mauricio DonizetiXia, ChangyuLima, Barnabé Pessoahttp://lattes.cnpq.br/0735780612586466Carvalho, Marcos Tulio Alves de2018-07-03T15:18:43Z2018-06-12Carvalho, M. T. A. Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas. 2018. 68 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/8635ark:/38995/0013000007kxmIn this work we study two problems: the first one involving the prescribed Schouten tensor and the second one the prescribed curvature operator. The first problem was inspired by the works Deturck and Yang, [6], which consist of: Given a tensor T of order 2 in the pseudo-Euclidean space ( ,g), n ≥ 3, with coordinates x = ( ), and metric g, where , = ±1, find a metric as = g, such that the tensor of Schouten be T. The second problem is the problem of the prescribed curvature tensor consist of: Let Euclidean space ( ;g), n ≥ 3, with coordinates x = ( ), is , the R a tensor of order 4 of the form , where T = , with differentiable functions.We want to find a metric = g, such that = , where is the tensor curvature of the metric . Considering that the solutions are invariant by translation and rotation, we find necessary and sufficient conditions for both problems to have solution.Neste trabalho estudamos dois problemas: o primeiro envolvendo o tensor de Schouten prescrito e o segundo o tensor curvatura prescrito. O primeiro problema foi inspirado no trabalho de Deturck e Yang, [6], que consiste em: Dado um tensor T de ordem 2 no espaço pseudo-Euclidiano ( ;g), n ≥ 3, com coordenadas x = ( ), e métrica g, onde , = ±1, encontrar uma métrica conforme = g, tal que o tensor de Schouten da métrica seja T. O segundo problema é o problema do tensor curvatura prescrito que consiste em: Seja o espaço Euclidiano ( ;g), n ≥ 3, com coordenadas x = ( ), e , e R um tensor de ordem 4 da forma onde T = , com funções diferenciáveis. Queremos encontrar uma métrica = g, tal que = , onde é o tensor curvatura da métrica . Considerando que as soluções sejam invariantes por translação e rotação, encontramos condições necessárias e suficientes para que ambos os problemas tenham solução.Submitted by Erika Demachki (erikademachki@gmail.com) on 2018-06-29T18:43:00Z No. of bitstreams: 2 Tese - Marcos Tulio Alves de Carvalho - 2018.pdf: 2579945 bytes, checksum: 29a08a3db199f6061cf6020d90ce9213 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:18:43Z (GMT) No. of bitstreams: 2 Tese - Marcos Tulio Alves de Carvalho - 2018.pdf: 2579945 bytes, checksum: 29a08a3db199f6061cf6020d90ce9213 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-07-03T15:18:43Z (GMT). No. of bitstreams: 2 Tese - Marcos Tulio Alves de Carvalho - 2018.pdf: 2579945 bytes, checksum: 29a08a3db199f6061cf6020d90ce9213 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-06-12Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTensor de SchoutenOperador curvaturaSchouten tensorCurvature operatorMATEMATICA::GEOMETRIA E TOPOLOGIASoluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planasInvariant solutions for the Schouten tensor and tensor curvature prescribed in locally conformally flat variesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-42687775123351520156357880884991220629-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/2b4a3a17-567c-4107-a7bc-8e1684b61e5e/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/a70ed365-3e9e-4ca2-a6c9-8245c24ef139/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/19c3e97c-cccc-46b8-a3f4-3f171f79e130/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/ac41f7e2-0fe7-4fd7-8cad-be36cbd01998/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Marcos Tulio Alves de Carvalho - 2018.pdfTese - Marcos Tulio Alves de Carvalho - 2018.pdfapplication/pdf2579945http://repositorio.bc.ufg.br/tede/bitstreams/936deb2e-ff62-490f-a169-6b73c4e8565d/download29a08a3db199f6061cf6020d90ce9213MD55tede/86352018-07-03 12:18:43.232http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8635http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-07-03T15:18:43Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
dc.title.alternative.eng.fl_str_mv Invariant solutions for the Schouten tensor and tensor curvature prescribed in locally conformally flat varies
title Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
spellingShingle Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
Carvalho, Marcos Tulio Alves de
Tensor de Schouten
Operador curvatura
Schouten tensor
Curvature operator
MATEMATICA::GEOMETRIA E TOPOLOGIA
title_short Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
title_full Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
title_fullStr Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
title_full_unstemmed Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
title_sort Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas
author Carvalho, Marcos Tulio Alves de
author_facet Carvalho, Marcos Tulio Alves de
author_role author
dc.contributor.advisor1.fl_str_mv Pina, Romildo da Silva
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2675728978857991
dc.contributor.referee1.fl_str_mv Pina, Romildo da Silva
dc.contributor.referee2.fl_str_mv Corro, Armando Mauro Vasquez
dc.contributor.referee3.fl_str_mv Pieterzack, Mauricio Donizeti
dc.contributor.referee4.fl_str_mv Xia, Changyu
dc.contributor.referee5.fl_str_mv Lima, Barnabé Pessoa
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0735780612586466
dc.contributor.author.fl_str_mv Carvalho, Marcos Tulio Alves de
contributor_str_mv Pina, Romildo da Silva
Pina, Romildo da Silva
Corro, Armando Mauro Vasquez
Pieterzack, Mauricio Donizeti
Xia, Changyu
Lima, Barnabé Pessoa
dc.subject.por.fl_str_mv Tensor de Schouten
Operador curvatura
topic Tensor de Schouten
Operador curvatura
Schouten tensor
Curvature operator
MATEMATICA::GEOMETRIA E TOPOLOGIA
dc.subject.eng.fl_str_mv Schouten tensor
Curvature operator
dc.subject.cnpq.fl_str_mv MATEMATICA::GEOMETRIA E TOPOLOGIA
description In this work we study two problems: the first one involving the prescribed Schouten tensor and the second one the prescribed curvature operator. The first problem was inspired by the works Deturck and Yang, [6], which consist of: Given a tensor T of order 2 in the pseudo-Euclidean space ( ,g), n ≥ 3, with coordinates x = ( ), and metric g, where , = ±1, find a metric as = g, such that the tensor of Schouten be T. The second problem is the problem of the prescribed curvature tensor consist of: Let Euclidean space ( ;g), n ≥ 3, with coordinates x = ( ), is , the R a tensor of order 4 of the form , where T = , with differentiable functions.We want to find a metric = g, such that = , where is the tensor curvature of the metric . Considering that the solutions are invariant by translation and rotation, we find necessary and sufficient conditions for both problems to have solution.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-07-03T15:18:43Z
dc.date.issued.fl_str_mv 2018-06-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Carvalho, M. T. A. Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas. 2018. 68 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/8635
dc.identifier.dark.fl_str_mv ark:/38995/0013000007kxm
identifier_str_mv Carvalho, M. T. A. Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas. 2018. 68 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.
ark:/38995/0013000007kxm
url http://repositorio.bc.ufg.br/tede/handle/tede/8635
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv 6357880884991220629
dc.relation.sponsorship.fl_str_mv -961409807440757778
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/2b4a3a17-567c-4107-a7bc-8e1684b61e5e/download
http://repositorio.bc.ufg.br/tede/bitstreams/a70ed365-3e9e-4ca2-a6c9-8245c24ef139/download
http://repositorio.bc.ufg.br/tede/bitstreams/19c3e97c-cccc-46b8-a3f4-3f171f79e130/download
http://repositorio.bc.ufg.br/tede/bitstreams/ac41f7e2-0fe7-4fd7-8cad-be36cbd01998/download
http://repositorio.bc.ufg.br/tede/bitstreams/936deb2e-ff62-490f-a169-6b73c4e8565d/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
29a08a3db199f6061cf6020d90ce9213
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1813816924826501120