Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000cbcs |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11851 |
Resumo: | In this thesis we study two problems involving Ricc i curvature. Initially, we start by considering gradient Einstein type solitons conformal to an $n --$dimensional pseudo Euclidean space. We present the associeated system of differential equations partial and, for such a system, solutions invariant under th e action of the pseudo orthogonal group, are considered. This approach allows us to provide explicit examples of $n --$dimensional gradient Einstein type manifolds, as well as, a rigidity result. We prove that a large class of gradient Riemannian Einstein ty pe manifolds conformal to an Euclidean space, rotationally symmetric, is isometric to $ symmetric, is isometric to $\\mathbb{S}^{nmathbb{S}^{n--1} 1} \\times times \\mathds{R}$.mathds{R}$. Posteriorly, we extend our analysis to prescribed tensors. When considering the space pseudoPosteriorly, we extend our analysis to prescribed tensors. When considering the space pseudo--Euclidean $(Euclidean $(\\mathds{R}^n,g)$, $n mathds{R}^n,g)$, $n \\geq geq 3$, with coordinates $x=3$, with coordinates $x=\\left(x_1,...,x_nleft(x_1,...,x_n\\right)$ and metric right)$ and metric components $g_{ij} = components $g_{ij} = \\delta_{ij}delta_{ij}\\epsilon_i$, $1epsilon_i$, $1\\leq i, jleq i, j\\leq n$, where $leq n$, where $\\varepsilon_i=varepsilon_i=\\pm1$ and one pm1$ and one diagonal $(0,2)$diagonal $(0,2)$--tensors of the form $tensors of the form $\\mathcal{T}=mathcal{T}=\\sum_isum_i\\epsilon_i{h_i(x)dx_i^2}$, we obtain nepsilon_i{h_i(x)dx_i^2}$, we obtain necessary ecessary and sufficient conditions for the existence of a metric $and sufficient conditions for the existence of a metric $\\overline{g}$, conformal to $g$, such that overline{g}$, conformal to $g$, such that $Ric_{$Ric_{\\overline{g}}overline{g}}--\\displaystyledisplaystyle\\frac{frac{\\overline{overline{\\mathcal{K}}}{2} mathcal{K}}}{2} \\overline{g} =overline{g} =\\mathcal{T}$, where mathcal{T}$, where $Ric_{$Ric_{\\overline{g}}$ and $overline{g}}$ and $\\overline{overline{\\mathcal{K}mathcal{K}}$ are the Ricci tensor and scalar curvature of the metric }$ are the Ricci tensor and scalar curvature of the metric $$\\overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid spacetime. Similar problems are considered for locally conformally flat manifolds.spacetime. Similar problems are considered for locally conformally flat manifolds. |
id |
UFG-2_eced52f197412cb3e21bd6239de57a32 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11851 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Pina, Romildo da Silvahttp://lattes.cnpq.br/ 2675728978857991Leandro Neto, Beneditohttp://lattes.cnpq.br/ 3393448440968708Adriano, Levi RosaLeandro Neto, BeneditoPieterzack, Mauricio DonizettiTenenblat, KetiSilva, Maria de Andrade Costa ehttp://lattes.cnpq.br/ 7371176883209596Menezes, Ilton Ferreira de2022-01-19T12:31:36Z2022-01-19T12:31:36Z2021-12-16MENEZES, I. F. Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano. 2021. 81 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11851ark:/38995/001300000cbcsIn this thesis we study two problems involving Ricc i curvature. Initially, we start by considering gradient Einstein type solitons conformal to an $n --$dimensional pseudo Euclidean space. We present the associeated system of differential equations partial and, for such a system, solutions invariant under th e action of the pseudo orthogonal group, are considered. This approach allows us to provide explicit examples of $n --$dimensional gradient Einstein type manifolds, as well as, a rigidity result. We prove that a large class of gradient Riemannian Einstein ty pe manifolds conformal to an Euclidean space, rotationally symmetric, is isometric to $ symmetric, is isometric to $\\mathbb{S}^{nmathbb{S}^{n--1} 1} \\times times \\mathds{R}$.mathds{R}$. Posteriorly, we extend our analysis to prescribed tensors. When considering the space pseudoPosteriorly, we extend our analysis to prescribed tensors. When considering the space pseudo--Euclidean $(Euclidean $(\\mathds{R}^n,g)$, $n mathds{R}^n,g)$, $n \\geq geq 3$, with coordinates $x=3$, with coordinates $x=\\left(x_1,...,x_nleft(x_1,...,x_n\\right)$ and metric right)$ and metric components $g_{ij} = components $g_{ij} = \\delta_{ij}delta_{ij}\\epsilon_i$, $1epsilon_i$, $1\\leq i, jleq i, j\\leq n$, where $leq n$, where $\\varepsilon_i=varepsilon_i=\\pm1$ and one pm1$ and one diagonal $(0,2)$diagonal $(0,2)$--tensors of the form $tensors of the form $\\mathcal{T}=mathcal{T}=\\sum_isum_i\\epsilon_i{h_i(x)dx_i^2}$, we obtain nepsilon_i{h_i(x)dx_i^2}$, we obtain necessary ecessary and sufficient conditions for the existence of a metric $and sufficient conditions for the existence of a metric $\\overline{g}$, conformal to $g$, such that overline{g}$, conformal to $g$, such that $Ric_{$Ric_{\\overline{g}}overline{g}}--\\displaystyledisplaystyle\\frac{frac{\\overline{overline{\\mathcal{K}}}{2} mathcal{K}}}{2} \\overline{g} =overline{g} =\\mathcal{T}$, where mathcal{T}$, where $Ric_{$Ric_{\\overline{g}}$ and $overline{g}}$ and $\\overline{overline{\\mathcal{K}mathcal{K}}$ are the Ricci tensor and scalar curvature of the metric }$ are the Ricci tensor and scalar curvature of the metric $$\\overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid spacetime. Similar problems are considered for locally conformally flat manifolds.spacetime. Similar problems are considered for locally conformally flat manifolds.Nesta tese estudamos dois problemas envolvendo a curvatura de Ricci. Inicialmente, começamos por considerar solitons tipo Einstein gradiente que s \\~ao conformes ao espa c{c}o pseudo Euclidiano $n $dimensional. Apresentamos o sistema de equa c{c} c}\\~oes difer enciais parciais resultante e, para tal sistema, s \\~ao consideradas soluções invariantes sob a a c{c} c}\\~ao do grupo pseudo ortogonal. Essa abordagem nos permite fornecer exemplos expl \\' icitos de variedades do tipo Einstein gradiente, bem como um resultado de rigidez. Provamos que uma grande classe de variedades Riemannianas $n --$ dimensional do tipo Einstein gradiente conformes a um espa c{c}o Euclidiano e rotacionalmente sim \\'etrica s \\~ao isom \\'etricas \\`a $ mathbb{S}^{n 1} times mathds{R}$. Posteriorme nte, estendemos nossa an \\'alise aos tensores prescritos. Ao considerar o espaço pseudo Euclidiano $( mathds{R}^n, g)$, $n geq3$, com coordenadas $x = left(x_1, ..., x_n right)$ e componentes da métrica $g_{ij}= delta_{ij} epsilon_i$, $1 leq i, j leq n$, on de $ varepsilon_i = pm1$ e um $(0, 2)$$ 2)$$--$tensores diagonais da forma mathcal{T}= sum_i epsilon_i{h_i (x) dx_i^2}$, obtemos as condições necessárias e suficientes para a existência de uma métrica $ overline{g} $, conforme \\`a $ g $, tal que $Ric_{ overli ne{g}} displaystyle frac{ overline{ mathcal{K}}}{2} overline{g}= mathcal{T}$, onde $ Ric_{ overline{g}} $ e $ overline{ mathcal{K}}$ são o tensor de Ricci e a curvatura escalar da métrica $ overline{g}$, respectivamente. Usando os resultados obtidos, co nstru \\'imos um exemplo de um espaço tempo flu \\'ido perfeito est \\'atico. Problemas semelhantes são considerados para variedades localmente conformemente Plana.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2022-01-18T13:13:21Z No. of bitstreams: 2 Tese - Ilton Ferreira de Menezes - 2021.pdf: 3457355 bytes, checksum: eba6e000249c9f142c73c4fcfa3327c5 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2022-01-19T12:31:36Z (GMT) No. of bitstreams: 2 Tese - Ilton Ferreira de Menezes - 2021.pdf: 3457355 bytes, checksum: eba6e000249c9f142c73c4fcfa3327c5 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2022-01-19T12:31:36Z (GMT). No. of bitstreams: 2 Tese - Ilton Ferreira de Menezes - 2021.pdf: 3457355 bytes, checksum: eba6e000249c9f142c73c4fcfa3327c5 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-12-16Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTensor de RicciTensor de EinsteinMétricas conformesVariedades tipo Einstein gradienteRicci tensorEinstein tensorConformal metricGradient Einstein type manifoldsCIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIASoluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo EuclidianoExplicit solutions to Einstein type manifold and prescribed Einstein tensor conformal to a pseudo Euclidean spaceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis68500500500500277941reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/72c4ef6f-dc2c-4c77-b6fa-b41b929e48bc/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/3e9a7ff6-72d9-4539-b090-29945925d632/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Ilton Ferreira de Menezes - 2021.pdfTese - Ilton Ferreira de Menezes - 2021.pdfapplication/pdf3457355http://repositorio.bc.ufg.br/tede/bitstreams/86c12202-b677-4ae2-be27-41a81b4e6131/downloadeba6e000249c9f142c73c4fcfa3327c5MD53tede/118512022-01-19 09:31:36.642http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11851http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2022-01-19T12:31:36Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano |
dc.title.alternative.eng.fl_str_mv |
Explicit solutions to Einstein type manifold and prescribed Einstein tensor conformal to a pseudo Euclidean space |
title |
Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano |
spellingShingle |
Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano Menezes, Ilton Ferreira de Tensor de Ricci Tensor de Einstein Métricas conformes Variedades tipo Einstein gradiente Ricci tensor Einstein tensor Conformal metric Gradient Einstein type manifolds CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
title_short |
Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano |
title_full |
Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano |
title_fullStr |
Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano |
title_full_unstemmed |
Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano |
title_sort |
Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano |
author |
Menezes, Ilton Ferreira de |
author_facet |
Menezes, Ilton Ferreira de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pina, Romildo da Silva |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/ 2675728978857991 |
dc.contributor.advisor-co1.fl_str_mv |
Leandro Neto, Benedito |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/ 3393448440968708 |
dc.contributor.referee1.fl_str_mv |
Adriano, Levi Rosa |
dc.contributor.referee2.fl_str_mv |
Leandro Neto, Benedito |
dc.contributor.referee3.fl_str_mv |
Pieterzack, Mauricio Donizetti |
dc.contributor.referee4.fl_str_mv |
Tenenblat, Keti |
dc.contributor.referee5.fl_str_mv |
Silva, Maria de Andrade Costa e |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/ 7371176883209596 |
dc.contributor.author.fl_str_mv |
Menezes, Ilton Ferreira de |
contributor_str_mv |
Pina, Romildo da Silva Leandro Neto, Benedito Adriano, Levi Rosa Leandro Neto, Benedito Pieterzack, Mauricio Donizetti Tenenblat, Keti Silva, Maria de Andrade Costa e |
dc.subject.por.fl_str_mv |
Tensor de Ricci Tensor de Einstein Métricas conformes Variedades tipo Einstein gradiente |
topic |
Tensor de Ricci Tensor de Einstein Métricas conformes Variedades tipo Einstein gradiente Ricci tensor Einstein tensor Conformal metric Gradient Einstein type manifolds CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
dc.subject.eng.fl_str_mv |
Ricci tensor Einstein tensor Conformal metric Gradient Einstein type manifolds |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
description |
In this thesis we study two problems involving Ricc i curvature. Initially, we start by considering gradient Einstein type solitons conformal to an $n --$dimensional pseudo Euclidean space. We present the associeated system of differential equations partial and, for such a system, solutions invariant under th e action of the pseudo orthogonal group, are considered. This approach allows us to provide explicit examples of $n --$dimensional gradient Einstein type manifolds, as well as, a rigidity result. We prove that a large class of gradient Riemannian Einstein ty pe manifolds conformal to an Euclidean space, rotationally symmetric, is isometric to $ symmetric, is isometric to $\\mathbb{S}^{nmathbb{S}^{n--1} 1} \\times times \\mathds{R}$.mathds{R}$. Posteriorly, we extend our analysis to prescribed tensors. When considering the space pseudoPosteriorly, we extend our analysis to prescribed tensors. When considering the space pseudo--Euclidean $(Euclidean $(\\mathds{R}^n,g)$, $n mathds{R}^n,g)$, $n \\geq geq 3$, with coordinates $x=3$, with coordinates $x=\\left(x_1,...,x_nleft(x_1,...,x_n\\right)$ and metric right)$ and metric components $g_{ij} = components $g_{ij} = \\delta_{ij}delta_{ij}\\epsilon_i$, $1epsilon_i$, $1\\leq i, jleq i, j\\leq n$, where $leq n$, where $\\varepsilon_i=varepsilon_i=\\pm1$ and one pm1$ and one diagonal $(0,2)$diagonal $(0,2)$--tensors of the form $tensors of the form $\\mathcal{T}=mathcal{T}=\\sum_isum_i\\epsilon_i{h_i(x)dx_i^2}$, we obtain nepsilon_i{h_i(x)dx_i^2}$, we obtain necessary ecessary and sufficient conditions for the existence of a metric $and sufficient conditions for the existence of a metric $\\overline{g}$, conformal to $g$, such that overline{g}$, conformal to $g$, such that $Ric_{$Ric_{\\overline{g}}overline{g}}--\\displaystyledisplaystyle\\frac{frac{\\overline{overline{\\mathcal{K}}}{2} mathcal{K}}}{2} \\overline{g} =overline{g} =\\mathcal{T}$, where mathcal{T}$, where $Ric_{$Ric_{\\overline{g}}$ and $overline{g}}$ and $\\overline{overline{\\mathcal{K}mathcal{K}}$ are the Ricci tensor and scalar curvature of the metric }$ are the Ricci tensor and scalar curvature of the metric $$\\overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid spacetime. Similar problems are considered for locally conformally flat manifolds.spacetime. Similar problems are considered for locally conformally flat manifolds. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-12-16 |
dc.date.accessioned.fl_str_mv |
2022-01-19T12:31:36Z |
dc.date.available.fl_str_mv |
2022-01-19T12:31:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MENEZES, I. F. Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano. 2021. 81 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11851 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000cbcs |
identifier_str_mv |
MENEZES, I. F. Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano. 2021. 81 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021. ark:/38995/001300000cbcs |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11851 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
68 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
27 |
dc.relation.cnpq.fl_str_mv |
794 |
dc.relation.sponsorship.fl_str_mv |
1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/72c4ef6f-dc2c-4c77-b6fa-b41b929e48bc/download http://repositorio.bc.ufg.br/tede/bitstreams/3e9a7ff6-72d9-4539-b090-29945925d632/download http://repositorio.bc.ufg.br/tede/bitstreams/86c12202-b677-4ae2-be27-41a81b4e6131/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 eba6e000249c9f142c73c4fcfa3327c5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172630999728128 |