Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano

Detalhes bibliográficos
Autor(a) principal: Menezes, Ilton Ferreira de
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000cbcs
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/11851
Resumo: In this thesis we study two problems involving Ricc i curvature. Initially, we start by considering gradient Einstein type solitons conformal to an $n --$dimensional pseudo Euclidean space. We present the associeated system of differential equations partial and, for such a system, solutions invariant under th e action of the pseudo orthogonal group, are considered. This approach allows us to provide explicit examples of $n --$dimensional gradient Einstein type manifolds, as well as, a rigidity result. We prove that a large class of gradient Riemannian Einstein ty pe manifolds conformal to an Euclidean space, rotationally symmetric, is isometric to $ symmetric, is isometric to $\\mathbb{S}^{nmathbb{S}^{n--1} 1} \\times times \\mathds{R}$.mathds{R}$. Posteriorly, we extend our analysis to prescribed tensors. When considering the space pseudoPosteriorly, we extend our analysis to prescribed tensors. When considering the space pseudo--Euclidean $(Euclidean $(\\mathds{R}^n,g)$, $n mathds{R}^n,g)$, $n \\geq geq 3$, with coordinates $x=3$, with coordinates $x=\\left(x_1,...,x_nleft(x_1,...,x_n\\right)$ and metric right)$ and metric components $g_{ij} = components $g_{ij} = \\delta_{ij}delta_{ij}\\epsilon_i$, $1epsilon_i$, $1\\leq i, jleq i, j\\leq n$, where $leq n$, where $\\varepsilon_i=varepsilon_i=\\pm1$ and one pm1$ and one diagonal $(0,2)$diagonal $(0,2)$--tensors of the form $tensors of the form $\\mathcal{T}=mathcal{T}=\\sum_isum_i\\epsilon_i{h_i(x)dx_i^2}$, we obtain nepsilon_i{h_i(x)dx_i^2}$, we obtain necessary ecessary and sufficient conditions for the existence of a metric $and sufficient conditions for the existence of a metric $\\overline{g}$, conformal to $g$, such that overline{g}$, conformal to $g$, such that $Ric_{$Ric_{\\overline{g}}overline{g}}--\\displaystyledisplaystyle\\frac{frac{\\overline{overline{\\mathcal{K}}}{2} mathcal{K}}}{2} \\overline{g} =overline{g} =\\mathcal{T}$, where mathcal{T}$, where $Ric_{$Ric_{\\overline{g}}$ and $overline{g}}$ and $\\overline{overline{\\mathcal{K}mathcal{K}}$ are the Ricci tensor and scalar curvature of the metric }$ are the Ricci tensor and scalar curvature of the metric $$\\overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid spacetime. Similar problems are considered for locally conformally flat manifolds.spacetime. Similar problems are considered for locally conformally flat manifolds.
id UFG-2_eced52f197412cb3e21bd6239de57a32
oai_identifier_str oai:repositorio.bc.ufg.br:tede/11851
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Pina, Romildo da Silvahttp://lattes.cnpq.br/ 2675728978857991Leandro Neto, Beneditohttp://lattes.cnpq.br/ 3393448440968708Adriano, Levi RosaLeandro Neto, BeneditoPieterzack, Mauricio DonizettiTenenblat, KetiSilva, Maria de Andrade Costa ehttp://lattes.cnpq.br/ 7371176883209596Menezes, Ilton Ferreira de2022-01-19T12:31:36Z2022-01-19T12:31:36Z2021-12-16MENEZES, I. F. Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano. 2021. 81 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11851ark:/38995/001300000cbcsIn this thesis we study two problems involving Ricc i curvature. Initially, we start by considering gradient Einstein type solitons conformal to an $n --$dimensional pseudo Euclidean space. We present the associeated system of differential equations partial and, for such a system, solutions invariant under th e action of the pseudo orthogonal group, are considered. This approach allows us to provide explicit examples of $n --$dimensional gradient Einstein type manifolds, as well as, a rigidity result. We prove that a large class of gradient Riemannian Einstein ty pe manifolds conformal to an Euclidean space, rotationally symmetric, is isometric to $ symmetric, is isometric to $\\mathbb{S}^{nmathbb{S}^{n--1} 1} \\times times \\mathds{R}$.mathds{R}$. Posteriorly, we extend our analysis to prescribed tensors. When considering the space pseudoPosteriorly, we extend our analysis to prescribed tensors. When considering the space pseudo--Euclidean $(Euclidean $(\\mathds{R}^n,g)$, $n mathds{R}^n,g)$, $n \\geq geq 3$, with coordinates $x=3$, with coordinates $x=\\left(x_1,...,x_nleft(x_1,...,x_n\\right)$ and metric right)$ and metric components $g_{ij} = components $g_{ij} = \\delta_{ij}delta_{ij}\\epsilon_i$, $1epsilon_i$, $1\\leq i, jleq i, j\\leq n$, where $leq n$, where $\\varepsilon_i=varepsilon_i=\\pm1$ and one pm1$ and one diagonal $(0,2)$diagonal $(0,2)$--tensors of the form $tensors of the form $\\mathcal{T}=mathcal{T}=\\sum_isum_i\\epsilon_i{h_i(x)dx_i^2}$, we obtain nepsilon_i{h_i(x)dx_i^2}$, we obtain necessary ecessary and sufficient conditions for the existence of a metric $and sufficient conditions for the existence of a metric $\\overline{g}$, conformal to $g$, such that overline{g}$, conformal to $g$, such that $Ric_{$Ric_{\\overline{g}}overline{g}}--\\displaystyledisplaystyle\\frac{frac{\\overline{overline{\\mathcal{K}}}{2} mathcal{K}}}{2} \\overline{g} =overline{g} =\\mathcal{T}$, where mathcal{T}$, where $Ric_{$Ric_{\\overline{g}}$ and $overline{g}}$ and $\\overline{overline{\\mathcal{K}mathcal{K}}$ are the Ricci tensor and scalar curvature of the metric }$ are the Ricci tensor and scalar curvature of the metric $$\\overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid spacetime. Similar problems are considered for locally conformally flat manifolds.spacetime. Similar problems are considered for locally conformally flat manifolds.Nesta tese estudamos dois problemas envolvendo a curvatura de Ricci. Inicialmente, começamos por considerar solitons tipo Einstein gradiente que s \\~ao conformes ao espa c{c}o pseudo Euclidiano $n $dimensional. Apresentamos o sistema de equa c{c} c}\\~oes difer enciais parciais resultante e, para tal sistema, s \\~ao consideradas soluções invariantes sob a a c{c} c}\\~ao do grupo pseudo ortogonal. Essa abordagem nos permite fornecer exemplos expl \\' icitos de variedades do tipo Einstein gradiente, bem como um resultado de rigidez. Provamos que uma grande classe de variedades Riemannianas $n --$ dimensional do tipo Einstein gradiente conformes a um espa c{c}o Euclidiano e rotacionalmente sim \\'etrica s \\~ao isom \\'etricas \\`a $ mathbb{S}^{n 1} times mathds{R}$. Posteriorme nte, estendemos nossa an \\'alise aos tensores prescritos. Ao considerar o espaço pseudo Euclidiano $( mathds{R}^n, g)$, $n geq3$, com coordenadas $x = left(x_1, ..., x_n right)$ e componentes da métrica $g_{ij}= delta_{ij} epsilon_i$, $1 leq i, j leq n$, on de $ varepsilon_i = pm1$ e um $(0, 2)$$ 2)$$--$tensores diagonais da forma mathcal{T}= sum_i epsilon_i{h_i (x) dx_i^2}$, obtemos as condições necessárias e suficientes para a existência de uma métrica $ overline{g} $, conforme \\`a $ g $, tal que $Ric_{ overli ne{g}} displaystyle frac{ overline{ mathcal{K}}}{2} overline{g}= mathcal{T}$, onde $ Ric_{ overline{g}} $ e $ overline{ mathcal{K}}$ são o tensor de Ricci e a curvatura escalar da métrica $ overline{g}$, respectivamente. Usando os resultados obtidos, co nstru \\'imos um exemplo de um espaço tempo flu \\'ido perfeito est \\'atico. Problemas semelhantes são considerados para variedades localmente conformemente Plana.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2022-01-18T13:13:21Z No. of bitstreams: 2 Tese - Ilton Ferreira de Menezes - 2021.pdf: 3457355 bytes, checksum: eba6e000249c9f142c73c4fcfa3327c5 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2022-01-19T12:31:36Z (GMT) No. of bitstreams: 2 Tese - Ilton Ferreira de Menezes - 2021.pdf: 3457355 bytes, checksum: eba6e000249c9f142c73c4fcfa3327c5 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2022-01-19T12:31:36Z (GMT). No. of bitstreams: 2 Tese - Ilton Ferreira de Menezes - 2021.pdf: 3457355 bytes, checksum: eba6e000249c9f142c73c4fcfa3327c5 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-12-16Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTensor de RicciTensor de EinsteinMétricas conformesVariedades tipo Einstein gradienteRicci tensorEinstein tensorConformal metricGradient Einstein type manifoldsCIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIASoluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo EuclidianoExplicit solutions to Einstein type manifold and prescribed Einstein tensor conformal to a pseudo Euclidean spaceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis68500500500500277941reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/72c4ef6f-dc2c-4c77-b6fa-b41b929e48bc/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/3e9a7ff6-72d9-4539-b090-29945925d632/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Ilton Ferreira de Menezes - 2021.pdfTese - Ilton Ferreira de Menezes - 2021.pdfapplication/pdf3457355http://repositorio.bc.ufg.br/tede/bitstreams/86c12202-b677-4ae2-be27-41a81b4e6131/downloadeba6e000249c9f142c73c4fcfa3327c5MD53tede/118512022-01-19 09:31:36.642http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11851http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2022-01-19T12:31:36Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
dc.title.alternative.eng.fl_str_mv Explicit solutions to Einstein type manifold and prescribed Einstein tensor conformal to a pseudo Euclidean space
title Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
spellingShingle Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
Menezes, Ilton Ferreira de
Tensor de Ricci
Tensor de Einstein
Métricas conformes
Variedades tipo Einstein gradiente
Ricci tensor
Einstein tensor
Conformal metric
Gradient Einstein type manifolds
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA
title_short Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
title_full Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
title_fullStr Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
title_full_unstemmed Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
title_sort Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano
author Menezes, Ilton Ferreira de
author_facet Menezes, Ilton Ferreira de
author_role author
dc.contributor.advisor1.fl_str_mv Pina, Romildo da Silva
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/ 2675728978857991
dc.contributor.advisor-co1.fl_str_mv Leandro Neto, Benedito
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/ 3393448440968708
dc.contributor.referee1.fl_str_mv Adriano, Levi Rosa
dc.contributor.referee2.fl_str_mv Leandro Neto, Benedito
dc.contributor.referee3.fl_str_mv Pieterzack, Mauricio Donizetti
dc.contributor.referee4.fl_str_mv Tenenblat, Keti
dc.contributor.referee5.fl_str_mv Silva, Maria de Andrade Costa e
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/ 7371176883209596
dc.contributor.author.fl_str_mv Menezes, Ilton Ferreira de
contributor_str_mv Pina, Romildo da Silva
Leandro Neto, Benedito
Adriano, Levi Rosa
Leandro Neto, Benedito
Pieterzack, Mauricio Donizetti
Tenenblat, Keti
Silva, Maria de Andrade Costa e
dc.subject.por.fl_str_mv Tensor de Ricci
Tensor de Einstein
Métricas conformes
Variedades tipo Einstein gradiente
topic Tensor de Ricci
Tensor de Einstein
Métricas conformes
Variedades tipo Einstein gradiente
Ricci tensor
Einstein tensor
Conformal metric
Gradient Einstein type manifolds
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA
dc.subject.eng.fl_str_mv Ricci tensor
Einstein tensor
Conformal metric
Gradient Einstein type manifolds
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA
description In this thesis we study two problems involving Ricc i curvature. Initially, we start by considering gradient Einstein type solitons conformal to an $n --$dimensional pseudo Euclidean space. We present the associeated system of differential equations partial and, for such a system, solutions invariant under th e action of the pseudo orthogonal group, are considered. This approach allows us to provide explicit examples of $n --$dimensional gradient Einstein type manifolds, as well as, a rigidity result. We prove that a large class of gradient Riemannian Einstein ty pe manifolds conformal to an Euclidean space, rotationally symmetric, is isometric to $ symmetric, is isometric to $\\mathbb{S}^{nmathbb{S}^{n--1} 1} \\times times \\mathds{R}$.mathds{R}$. Posteriorly, we extend our analysis to prescribed tensors. When considering the space pseudoPosteriorly, we extend our analysis to prescribed tensors. When considering the space pseudo--Euclidean $(Euclidean $(\\mathds{R}^n,g)$, $n mathds{R}^n,g)$, $n \\geq geq 3$, with coordinates $x=3$, with coordinates $x=\\left(x_1,...,x_nleft(x_1,...,x_n\\right)$ and metric right)$ and metric components $g_{ij} = components $g_{ij} = \\delta_{ij}delta_{ij}\\epsilon_i$, $1epsilon_i$, $1\\leq i, jleq i, j\\leq n$, where $leq n$, where $\\varepsilon_i=varepsilon_i=\\pm1$ and one pm1$ and one diagonal $(0,2)$diagonal $(0,2)$--tensors of the form $tensors of the form $\\mathcal{T}=mathcal{T}=\\sum_isum_i\\epsilon_i{h_i(x)dx_i^2}$, we obtain nepsilon_i{h_i(x)dx_i^2}$, we obtain necessary ecessary and sufficient conditions for the existence of a metric $and sufficient conditions for the existence of a metric $\\overline{g}$, conformal to $g$, such that overline{g}$, conformal to $g$, such that $Ric_{$Ric_{\\overline{g}}overline{g}}--\\displaystyledisplaystyle\\frac{frac{\\overline{overline{\\mathcal{K}}}{2} mathcal{K}}}{2} \\overline{g} =overline{g} =\\mathcal{T}$, where mathcal{T}$, where $Ric_{$Ric_{\\overline{g}}$ and $overline{g}}$ and $\\overline{overline{\\mathcal{K}mathcal{K}}$ are the Ricci tensor and scalar curvature of the metric }$ are the Ricci tensor and scalar curvature of the metric $$\\overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid overline{g}$, respectively. Using the results obtained, we construct an example of a static perfect fluid spacetime. Similar problems are considered for locally conformally flat manifolds.spacetime. Similar problems are considered for locally conformally flat manifolds.
publishDate 2021
dc.date.issued.fl_str_mv 2021-12-16
dc.date.accessioned.fl_str_mv 2022-01-19T12:31:36Z
dc.date.available.fl_str_mv 2022-01-19T12:31:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MENEZES, I. F. Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano. 2021. 81 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/11851
dc.identifier.dark.fl_str_mv ark:/38995/001300000cbcs
identifier_str_mv MENEZES, I. F. Soluções explícitas para variedades tipo Einstein e tensor de Einstein prescrito conforme ao espaço pseudo Euclidiano. 2021. 81 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021.
ark:/38995/001300000cbcs
url http://repositorio.bc.ufg.br/tede/handle/tede/11851
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 68
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 27
dc.relation.cnpq.fl_str_mv 794
dc.relation.sponsorship.fl_str_mv 1
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/72c4ef6f-dc2c-4c77-b6fa-b41b929e48bc/download
http://repositorio.bc.ufg.br/tede/bitstreams/3e9a7ff6-72d9-4539-b090-29945925d632/download
http://repositorio.bc.ufg.br/tede/bitstreams/86c12202-b677-4ae2-be27-41a81b4e6131/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
eba6e000249c9f142c73c4fcfa3327c5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172630999728128