A teoria elementar dos inteiros de Gauss
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/10226 |
Resumo: | This work refers to the importance of the arithmetic properties of the integers in the comprehension of the abstracts structures as Gauss integers Z[i] subset of complex numbers(C) a alarm information is the little relevance that this topic receives by math teachers of elementary school, This research is a bibliographic work in order to promote a theoretical survey by the main results which are around the sts Z and Z[i], This work has the intention of mobilise the math teachers who might have math dominium on Z arithmetic properties, because they will give them the possibilities to estabilish a parallel between Z and Z[i] and consequently to describe the equalities and differences between the analysed structures, The research was divided in three chapters, Initially were exposed the main results referents to the set Z and a priori of properties that will be valid to the set Z[i],then it will be done a detailed approach about the characteristics of Z[i] and a suggestion of math application of Z[i] that could be developed at the elementary education, in high school third grade concerning to the determination of all possible Pythagoras theorems derived from a value previously fixed to the hypotenuse right triangule , During al the work its visible the intense search on a strict mathematical achieved by intentional form, in order to promote to the math teachers the opportunity if knowing or deepen the math knowledges through other abstracts structures, in this case the set Z[i]. |
id |
UFG-2_e1e47ce7456268b8a268cc98af120ca5 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/10226 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Dias, Ivonildes Ribeiro Martinshttp://lattes.cnpq.br/8664599889120339Rodrigues, Paulo Henrique de AzevedoVeras, Daiane SoaresDias, Ivonildes Ribeiro Martinshttp://lattes.cnpq.br/3453994736359138Batista, Paulo Henrique Alves2019-12-05T11:01:21Z2019-11-08BATISTA, Paulo Henrique Alves. A teoria elementar dos inteiros de Gauss. 2019. 79 f. Dissertação (Mestrado em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/10226This work refers to the importance of the arithmetic properties of the integers in the comprehension of the abstracts structures as Gauss integers Z[i] subset of complex numbers(C) a alarm information is the little relevance that this topic receives by math teachers of elementary school, This research is a bibliographic work in order to promote a theoretical survey by the main results which are around the sts Z and Z[i], This work has the intention of mobilise the math teachers who might have math dominium on Z arithmetic properties, because they will give them the possibilities to estabilish a parallel between Z and Z[i] and consequently to describe the equalities and differences between the analysed structures, The research was divided in three chapters, Initially were exposed the main results referents to the set Z and a priori of properties that will be valid to the set Z[i],then it will be done a detailed approach about the characteristics of Z[i] and a suggestion of math application of Z[i] that could be developed at the elementary education, in high school third grade concerning to the determination of all possible Pythagoras theorems derived from a value previously fixed to the hypotenuse right triangule , During al the work its visible the intense search on a strict mathematical achieved by intentional form, in order to promote to the math teachers the opportunity if knowing or deepen the math knowledges through other abstracts structures, in this case the set Z[i].O trabalho refere-se a importância das propriedades aritméticas dos Inteiros na compreensão de novas estruturas abstratas, como os Inteiros de Gauss (Z[i]), subconjunto dos Números Complexos (C). Esta pesquisa é de cunho bibliográfico a fim de promover um levantamento teórico perante aos principais resultados que estão em torno dos conjuntos Z e Z[i]. O trabalho vem com o intuito de mobilizar os professores de matemática que é fundamental ter domínio matemático sobre as propriedades aritméticas de Z, por que elas possibilitará a ele e aos discentes a capacidade de estabelecer um paralelo entre Z e Z[i] e consequentemente, descrever as diferenças e semelhanças entre as estruturas analisadas. A pesquisa foi dividida em três capítulos. Inicialmente, foram expostos os principais resultados referentes ao conjunto Z e a priori de propriedades que serão válidas para o conjunto Z[i]. Em seguida, será feita uma abordagem minuciosa sobre as características de Z[i] e enfim uma sugestão de aplicação matemática de Z[i] que pode ser desenvolvida no Ensino Básico, 3a série do Ensino Médio, referente a determinação de todos os possíveis ternos pitagóricos a partir de um valor previamente fixado para a hipotenusa de um triângulo retângulo. Durante todo o trabalho, é perceptível o busca intensa mediante rigor matemático, fato este realizado de forma intencional, a _m de promover aos professores de Matemática a oportunidade de conhecer e/ou aprofundar o conhecimento matemático mediante outras estruturas abstratas, neste caso, o conjunto Z[i].Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2019-12-04T13:24:56Z No. of bitstreams: 2 Dissertação - Paulo Henrique Alves Batista - 2019.pdf: 1049636 bytes, checksum: a7632b8eada646b4d8e962479a054e07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-12-05T11:01:21Z (GMT) No. of bitstreams: 2 Dissertação - Paulo Henrique Alves Batista - 2019.pdf: 1049636 bytes, checksum: a7632b8eada646b4d8e962479a054e07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-12-05T11:01:21Z (GMT). No. of bitstreams: 2 Dissertação - Paulo Henrique Alves Batista - 2019.pdf: 1049636 bytes, checksum: a7632b8eada646b4d8e962479a054e07 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-11-08application/pdfporUniversidade Federal de GoiásPROFMAT - Programa de Pós-graduação em Matemática em Rede Nacional - Sociedade Brasileira de Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessInteirosInteiros de GaussTernos pitagóricosIntegersGauss integersPhytagoream theoremsCIENCIAS EXATAS E DA TERRA::MATEMATICAA teoria elementar dos inteiros de Gaussinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis4280721485626151024600600600-4268777512335152015-7090823417984401694reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/fd92625c-40ef-42c1-87a1-21ab0f458c96/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/9996e365-60ec-4848-8c34-a83bec6c70d5/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/2ff37e8e-64f7-492d-9a82-7dc26cd1b915/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/47f5ff69-53e5-427c-9f08-6b9fa92df0ed/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Paulo Henrique Alves Batista - 2019.pdfDissertação - Paulo Henrique Alves Batista - 2019.pdfapplication/pdf1049636http://repositorio.bc.ufg.br/tede/bitstreams/c9715095-c8e5-4660-bcb2-dd14af15daf6/downloada7632b8eada646b4d8e962479a054e07MD55tede/102262019-12-05 08:01:21.418http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10226http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-12-05T11:01:21Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
A teoria elementar dos inteiros de Gauss |
title |
A teoria elementar dos inteiros de Gauss |
spellingShingle |
A teoria elementar dos inteiros de Gauss Batista, Paulo Henrique Alves Inteiros Inteiros de Gauss Ternos pitagóricos Integers Gauss integers Phytagoream theorems CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
A teoria elementar dos inteiros de Gauss |
title_full |
A teoria elementar dos inteiros de Gauss |
title_fullStr |
A teoria elementar dos inteiros de Gauss |
title_full_unstemmed |
A teoria elementar dos inteiros de Gauss |
title_sort |
A teoria elementar dos inteiros de Gauss |
author |
Batista, Paulo Henrique Alves |
author_facet |
Batista, Paulo Henrique Alves |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Dias, Ivonildes Ribeiro Martins |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8664599889120339 |
dc.contributor.referee1.fl_str_mv |
Rodrigues, Paulo Henrique de Azevedo |
dc.contributor.referee2.fl_str_mv |
Veras, Daiane Soares |
dc.contributor.referee3.fl_str_mv |
Dias, Ivonildes Ribeiro Martins |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3453994736359138 |
dc.contributor.author.fl_str_mv |
Batista, Paulo Henrique Alves |
contributor_str_mv |
Dias, Ivonildes Ribeiro Martins Rodrigues, Paulo Henrique de Azevedo Veras, Daiane Soares Dias, Ivonildes Ribeiro Martins |
dc.subject.por.fl_str_mv |
Inteiros Inteiros de Gauss Ternos pitagóricos |
topic |
Inteiros Inteiros de Gauss Ternos pitagóricos Integers Gauss integers Phytagoream theorems CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Integers Gauss integers Phytagoream theorems |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
This work refers to the importance of the arithmetic properties of the integers in the comprehension of the abstracts structures as Gauss integers Z[i] subset of complex numbers(C) a alarm information is the little relevance that this topic receives by math teachers of elementary school, This research is a bibliographic work in order to promote a theoretical survey by the main results which are around the sts Z and Z[i], This work has the intention of mobilise the math teachers who might have math dominium on Z arithmetic properties, because they will give them the possibilities to estabilish a parallel between Z and Z[i] and consequently to describe the equalities and differences between the analysed structures, The research was divided in three chapters, Initially were exposed the main results referents to the set Z and a priori of properties that will be valid to the set Z[i],then it will be done a detailed approach about the characteristics of Z[i] and a suggestion of math application of Z[i] that could be developed at the elementary education, in high school third grade concerning to the determination of all possible Pythagoras theorems derived from a value previously fixed to the hypotenuse right triangule , During al the work its visible the intense search on a strict mathematical achieved by intentional form, in order to promote to the math teachers the opportunity if knowing or deepen the math knowledges through other abstracts structures, in this case the set Z[i]. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-12-05T11:01:21Z |
dc.date.issued.fl_str_mv |
2019-11-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BATISTA, Paulo Henrique Alves. A teoria elementar dos inteiros de Gauss. 2019. 79 f. Dissertação (Mestrado em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/10226 |
identifier_str_mv |
BATISTA, Paulo Henrique Alves. A teoria elementar dos inteiros de Gauss. 2019. 79 f. Dissertação (Mestrado em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2019. |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/10226 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
4280721485626151024 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
PROFMAT - Programa de Pós-graduação em Matemática em Rede Nacional - Sociedade Brasileira de Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/fd92625c-40ef-42c1-87a1-21ab0f458c96/download http://repositorio.bc.ufg.br/tede/bitstreams/9996e365-60ec-4848-8c34-a83bec6c70d5/download http://repositorio.bc.ufg.br/tede/bitstreams/2ff37e8e-64f7-492d-9a82-7dc26cd1b915/download http://repositorio.bc.ufg.br/tede/bitstreams/47f5ff69-53e5-427c-9f08-6b9fa92df0ed/download http://repositorio.bc.ufg.br/tede/bitstreams/c9715095-c8e5-4660-bcb2-dd14af15daf6/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e a7632b8eada646b4d8e962479a054e07 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1823229418816929792 |