Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000b3pq |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/6204 |
Resumo: | Recent studies show that often, pathologies are caused by Reactive oxygen species (ROS). The ROS are associated with the oxidative stress in the cells. The body uses the antioxidants to defend itself from the consequences of this process. An example of an antioxidant with different functions in an organism is the Glutathione (GSH). It is a cellular thiol with low molecular mass, that’s synthesized by chemical, enzymatic and fermentative methods. Since it is environmentally and economically viable, the use of the fermentative process has gained scientific visibility. The use of mathematical models is an alternative that helps in the production of Glutathione. Considering these observations, the present study's aimed to elaborate a mathematical model for production and prediction of GSH for Saccharomyces cerevisiae, as well as to validate its numerical optimization experimentally. For the mathematical model in this process, was used the Central Composite Rotational Design 2², having as an answer, the GSH and biomass values in function with the concentration of molasses and glycerol during a period of 96 hours of fermentation. Based on these results, a hybrid model was made, having as a result, the specific rate of GSH formation. The final model was adjusted to a polynomial function using the method of least squares. Experimentally, the maximum production of GSH was found to be, in 72 hours (119,6 mg L-1) using 76,9 g L-1of molasses and glycerol, respectively. Applying the model for similar conditions, it was estimated to a 118,6mg L-1. The experimental results were then statistically analyzed to verify their similarity. The numerical optimization was made by setting the clock for 72 hours. At this step, the concentration of molasses and glycerol were varied until the best conditions to produce GSH were met. The optimization helped to derive an estimate that 70 g L-1of sugar cane molasses and 40 g L-1of glycerol can guarantee the production of 126 mg L-1of GSH. Based on the accuracy of the observations, the same conditions were used as a central point for the validation of the model - Factorial Design2². The results obtained under these conditions helped establish that the central point of the proposed design for the validation of the model, is 127,3mg L-1of GSH in 72 hours. The validation of this mathematical model by the numerical optimization proved that it was effective for the production and prediction of Glutathione by Saccharomyces cerevisiae, using industrial by-products. |
id |
UFG-2_fa5681a42d4d15c86cb46be9111ad5d2 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/6204 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Castiglioni, Gabriel Luishttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778449D6Geraldine, Robson Maiahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4792431Y6Castiglioni, Gabriel LuisGeraldine, Robson MaiaFreitas, Fernanda FerreiraPutti, Fernando Ferrarihttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4614000T3Cruz, Késia de Souza2016-09-15T12:39:25Z2016-05-02CRUZ, K. S. Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais. 2016. 136 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/6204ark:/38995/001300000b3pqRecent studies show that often, pathologies are caused by Reactive oxygen species (ROS). The ROS are associated with the oxidative stress in the cells. The body uses the antioxidants to defend itself from the consequences of this process. An example of an antioxidant with different functions in an organism is the Glutathione (GSH). It is a cellular thiol with low molecular mass, that’s synthesized by chemical, enzymatic and fermentative methods. Since it is environmentally and economically viable, the use of the fermentative process has gained scientific visibility. The use of mathematical models is an alternative that helps in the production of Glutathione. Considering these observations, the present study's aimed to elaborate a mathematical model for production and prediction of GSH for Saccharomyces cerevisiae, as well as to validate its numerical optimization experimentally. For the mathematical model in this process, was used the Central Composite Rotational Design 2², having as an answer, the GSH and biomass values in function with the concentration of molasses and glycerol during a period of 96 hours of fermentation. Based on these results, a hybrid model was made, having as a result, the specific rate of GSH formation. The final model was adjusted to a polynomial function using the method of least squares. Experimentally, the maximum production of GSH was found to be, in 72 hours (119,6 mg L-1) using 76,9 g L-1of molasses and glycerol, respectively. Applying the model for similar conditions, it was estimated to a 118,6mg L-1. The experimental results were then statistically analyzed to verify their similarity. The numerical optimization was made by setting the clock for 72 hours. At this step, the concentration of molasses and glycerol were varied until the best conditions to produce GSH were met. The optimization helped to derive an estimate that 70 g L-1of sugar cane molasses and 40 g L-1of glycerol can guarantee the production of 126 mg L-1of GSH. Based on the accuracy of the observations, the same conditions were used as a central point for the validation of the model - Factorial Design2². The results obtained under these conditions helped establish that the central point of the proposed design for the validation of the model, is 127,3mg L-1of GSH in 72 hours. The validation of this mathematical model by the numerical optimization proved that it was effective for the production and prediction of Glutathione by Saccharomyces cerevisiae, using industrial by-products.Estudos recentes mostram que as patologias mediadas por espécies reativas de oxigênio (ERO) estão frequentes. As EROs associam-se ao estresse oxidativo nas células, e para o corpo defender-se das consequências advindas desse processo, utiliza os antioxidantes. Um exemplo de antioxidante com variadas funções no organismo é a glutationa (GSH). Trata-se de um tiol celular de baixa massa molecular, que pode ser sintetizada por via química, enzimática e fermentativa. Devido sua viabilidade ambiental e econômica, o uso de processos fermentativos tem ganhado visibilidade científica. O emprego de modelos matemáticos é uma alternativa que auxilia na predição deste antioxidante. Tendo em vista estas observações o presente trabalho teve como objetivo elaborar um modelo matemático de predição da produção de GSH por S. cerevisiae, bem como validar experimentalmente sua otimização numérica. Para a confecção do modelo matemático utilizou-se um Delineamento Composto Central Rotacional 2², tendo como resposta os valores de GSH e biomassa em função das concentrações de melaço e glicerol durante 96 horas de fermentação. A partir desses resultados foi confeccionado um modelo híbrido, tendo como resposta a velocidade específica de formação de GSH. O modelo final foi ajustado a uma função polinomial utilizando metodologia dos Mínimos Quadrados. Experimentalmente a máxima produção de GSH foi encontrada em 72 horas (119,6 mg L-1) utilizando 76,9 g L-1 de melaço e glicerol, respectivamente. Aplicando o modelo para as mesmas condições estimou-se 118,6 mg L-1. Os resultados experimentais e preditos foram analisados estatisticamente para verificar a similaridade dos mesmos. A otimização numérica foi feita fixando o tempo em 72 horas. Nessa etapa variaram-se as concentrações de melaço e glicerol até obter a melhor condição para produzir GSH. A otimização estimou que 70 g L-1de melaço de cana-de-açúcar e 40 g L-1 de glicerol podem garantir uma produção de 126 mg L-1 de GSH. Tendo em conta esta constatação, essas condições foram utilizadas como ponto central de um Delineamento Fatorial Completo 2² para validação do modelo. O resultado encontrado nas mesmas condições do ponto central do delineamento proposto para validação foi de 127,3 mg L-1 de GSH em 72 horas. A validação do modelo matemático por meio de otimização numérica comprovou que o uso da modelagem foi eficaz para a predição da produção de glutationa por Saccharomyces cerevisiae utilizando subprodutos industriais.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-09-12T18:53:50Z No. of bitstreams: 2 Dissertação - Késia de Souza Cruz - 2016.pdf: 2312278 bytes, checksum: 9388f7c21e3443036e7ad2c1d3256ed1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-15T12:39:25Z (GMT) No. of bitstreams: 2 Dissertação - Késia de Souza Cruz - 2016.pdf: 2312278 bytes, checksum: 9388f7c21e3443036e7ad2c1d3256ed1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2016-09-15T12:39:25Z (GMT). No. of bitstreams: 2 Dissertação - Késia de Souza Cruz - 2016.pdf: 2312278 bytes, checksum: 9388f7c21e3443036e7ad2c1d3256ed1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-02Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia Química (IQ)UFGBrasilInstituto de Química - IQ (RG)http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessModelagem matemáticaResíduosGSHS.cerevisiaeModelo híbridoMathematical modelingWasteHybrid modelENGENHARIAS::ENGENHARIA QUIMICAOtimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriaisNumerical optimization of glutathione production by saccharomyces cerevisiae using industrial by-productsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis34814965011584600786006006006007826066743741197278-18486402610968708782075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/ea18e325-eb5f-45ed-a27b-23fce7f963c0/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://repositorio.bc.ufg.br/tede/bitstreams/16215520-ed1b-41c6-a15e-ddf2881dc9fb/download321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/5642619b-236f-4a41-b5c7-380ed63da19a/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/23b91f13-2da2-448b-9516-ad3e9b063341/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Késia de Souza Cruz - 2016.pdfDissertação - Késia de Souza Cruz - 2016.pdfapplication/pdf2312278http://repositorio.bc.ufg.br/tede/bitstreams/60a90d76-1d92-4a0b-940e-0ecef1b420da/download9388f7c21e3443036e7ad2c1d3256ed1MD55tede/62042016-09-15 09:39:25.547http://creativecommons.org/licenses/by/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/6204http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-09-15T12:39:25Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais |
dc.title.alternative.eng.fl_str_mv |
Numerical optimization of glutathione production by saccharomyces cerevisiae using industrial by-products |
title |
Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais |
spellingShingle |
Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais Cruz, Késia de Souza Modelagem matemática Resíduos GSH S.cerevisiae Modelo híbrido Mathematical modeling Waste Hybrid model ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais |
title_full |
Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais |
title_fullStr |
Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais |
title_full_unstemmed |
Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais |
title_sort |
Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais |
author |
Cruz, Késia de Souza |
author_facet |
Cruz, Késia de Souza |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Castiglioni, Gabriel Luis |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778449D6 |
dc.contributor.advisor-co1.fl_str_mv |
Geraldine, Robson Maia |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4792431Y6 |
dc.contributor.referee1.fl_str_mv |
Castiglioni, Gabriel Luis |
dc.contributor.referee2.fl_str_mv |
Geraldine, Robson Maia |
dc.contributor.referee3.fl_str_mv |
Freitas, Fernanda Ferreira |
dc.contributor.referee4.fl_str_mv |
Putti, Fernando Ferrari |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4614000T3 |
dc.contributor.author.fl_str_mv |
Cruz, Késia de Souza |
contributor_str_mv |
Castiglioni, Gabriel Luis Geraldine, Robson Maia Castiglioni, Gabriel Luis Geraldine, Robson Maia Freitas, Fernanda Ferreira Putti, Fernando Ferrari |
dc.subject.por.fl_str_mv |
Modelagem matemática Resíduos GSH S.cerevisiae Modelo híbrido |
topic |
Modelagem matemática Resíduos GSH S.cerevisiae Modelo híbrido Mathematical modeling Waste Hybrid model ENGENHARIAS::ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Mathematical modeling Waste Hybrid model |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA |
description |
Recent studies show that often, pathologies are caused by Reactive oxygen species (ROS). The ROS are associated with the oxidative stress in the cells. The body uses the antioxidants to defend itself from the consequences of this process. An example of an antioxidant with different functions in an organism is the Glutathione (GSH). It is a cellular thiol with low molecular mass, that’s synthesized by chemical, enzymatic and fermentative methods. Since it is environmentally and economically viable, the use of the fermentative process has gained scientific visibility. The use of mathematical models is an alternative that helps in the production of Glutathione. Considering these observations, the present study's aimed to elaborate a mathematical model for production and prediction of GSH for Saccharomyces cerevisiae, as well as to validate its numerical optimization experimentally. For the mathematical model in this process, was used the Central Composite Rotational Design 2², having as an answer, the GSH and biomass values in function with the concentration of molasses and glycerol during a period of 96 hours of fermentation. Based on these results, a hybrid model was made, having as a result, the specific rate of GSH formation. The final model was adjusted to a polynomial function using the method of least squares. Experimentally, the maximum production of GSH was found to be, in 72 hours (119,6 mg L-1) using 76,9 g L-1of molasses and glycerol, respectively. Applying the model for similar conditions, it was estimated to a 118,6mg L-1. The experimental results were then statistically analyzed to verify their similarity. The numerical optimization was made by setting the clock for 72 hours. At this step, the concentration of molasses and glycerol were varied until the best conditions to produce GSH were met. The optimization helped to derive an estimate that 70 g L-1of sugar cane molasses and 40 g L-1of glycerol can guarantee the production of 126 mg L-1of GSH. Based on the accuracy of the observations, the same conditions were used as a central point for the validation of the model - Factorial Design2². The results obtained under these conditions helped establish that the central point of the proposed design for the validation of the model, is 127,3mg L-1of GSH in 72 hours. The validation of this mathematical model by the numerical optimization proved that it was effective for the production and prediction of Glutathione by Saccharomyces cerevisiae, using industrial by-products. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-09-15T12:39:25Z |
dc.date.issued.fl_str_mv |
2016-05-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CRUZ, K. S. Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais. 2016. 136 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Goiás, Goiânia, 2016. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/6204 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000b3pq |
identifier_str_mv |
CRUZ, K. S. Otimização numérica da produção de glutationa por saccharomyces cerevisiae utilizando subprodutos industriais. 2016. 136 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Goiás, Goiânia, 2016. ark:/38995/001300000b3pq |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/6204 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
3481496501158460078 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
7826066743741197278 |
dc.relation.cnpq.fl_str_mv |
-1848640261096870878 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Engenharia Química (IQ) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Química - IQ (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/ea18e325-eb5f-45ed-a27b-23fce7f963c0/download http://repositorio.bc.ufg.br/tede/bitstreams/16215520-ed1b-41c6-a15e-ddf2881dc9fb/download http://repositorio.bc.ufg.br/tede/bitstreams/5642619b-236f-4a41-b5c7-380ed63da19a/download http://repositorio.bc.ufg.br/tede/bitstreams/23b91f13-2da2-448b-9516-ad3e9b063341/download http://repositorio.bc.ufg.br/tede/bitstreams/60a90d76-1d92-4a0b-940e-0ecef1b420da/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 321f3992dd3875151d8801b773ab32ed d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 9388f7c21e3443036e7ad2c1d3256ed1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172618314055680 |