Agrometeorological models for estimating sweet cassava yield
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Tropical (Online) |
Texto Completo: | https://revistas.ufg.br/pat/article/view/50451 |
Resumo: | Brazil is the fourth largest producer of cassava in the world, with climate conditions being the main factor regulating its production. This study aimed to develop agrometeorological models to estimate the sweet cassava yield for the São Paulo state, as well as to identify which climatic variables have more influence on yield. The models were built with multiple linear regression and classified by the following statistical indexes: lower mean absolute percentage error, higher adjusted determination coefficient and significance (p-value < 0.05). It was observed that the mean air temperature has a great influence on the sweet cassava yield during the whole cycle for all regions in the state. Water deficit and soil water storage were the most influential variables at the beginning and final stages. The models accuracy ranged in 3.11 %, 6.40 %, 6.77 % and 7.15 %, respectively for Registro, Mogi Mirim, Assis and Jaboticabal. |
id |
UFG-6_a7b9d85cb20cb4de83ae75a5b55ba5ce |
---|---|
oai_identifier_str |
oai:ojs.revistas.ufg.br:article/50451 |
network_acronym_str |
UFG-6 |
network_name_str |
Pesquisa Agropecuária Tropical (Online) |
repository_id_str |
|
spelling |
Agrometeorological models for estimating sweet cassava yieldModelos agrometeorológicos para estimar o rendimento de mandioca doceManihot esculentacrop modelingclimatology.Manihot esculentaModelagem de culturasClimatologiaBrazil is the fourth largest producer of cassava in the world, with climate conditions being the main factor regulating its production. This study aimed to develop agrometeorological models to estimate the sweet cassava yield for the São Paulo state, as well as to identify which climatic variables have more influence on yield. The models were built with multiple linear regression and classified by the following statistical indexes: lower mean absolute percentage error, higher adjusted determination coefficient and significance (p-value < 0.05). It was observed that the mean air temperature has a great influence on the sweet cassava yield during the whole cycle for all regions in the state. Water deficit and soil water storage were the most influential variables at the beginning and final stages. The models accuracy ranged in 3.11 %, 6.40 %, 6.77 % and 7.15 %, respectively for Registro, Mogi Mirim, Assis and Jaboticabal.O Brasil é o quarto maior produtor mundial de mandioca, tendo as condições climáticas como principais fatores na regulação de sua produção. Objetivou-se desenvolver modelos agrometeorológicos para estimar a produtividade de mandioca doce para o estado de São Paulo, bem como identificar quais variáveis climáticas exercem maior influência sobre a produtividade. Os modelos foram construídos com regressão linear múltipla e classificados pelos seguintes índices estatísticos: menor erro percentual absoluto médio, maior coeficiente de determinação ajustado e significância (p-valor < 0.05). Identificou-se que a temperatura média do ar tem grande influência no rendimento da mandioca durante todo o ciclo, para todas as regiões do estado. O déficit hídrico e o armazenamento de água no solo foram as variáveis mais influentes nos estágios inicial e final. A precisão dos modelos variou em 3,11 %, 6,40 %, 6,77 % e 7,15 %, respectivamente para Registro, Mogi Mirim, Assis e Jaboticabal.Escola de Agronomia - Universidade Federal de Goiás2018-04-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por paresapplication/pdfhttps://revistas.ufg.br/pat/article/view/50451Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; v. 48, n. 1, Jan./Mar. 2018; 43-51Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); v. 48, n. 1, jan./mar. 2018; 43-51Pesquisa Agropecuária Tropical; v. 48, n. 1, jan./mar. 2018; 43-511983-4063reponame:Pesquisa Agropecuária Tropical (Online)instname:Universidade Federal de Goiás (UFG)instacron:UFGenghttps://revistas.ufg.br/pat/article/view/50451/25412Copyright (c) 2018 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics)info:eu-repo/semantics/openAccessBrunini Moreto, VictorEduardo de Oliveira Aparecido, Lucasde Souza Rolim, GlaucoReinaldo da Silva Cabral de Moraes, José2020-07-13T19:00:12Zoai:ojs.revistas.ufg.br:article/50451Revistahttps://revistas.ufg.br/patPUBhttps://revistas.ufg.br/pat/oaiaseleguini.pat@gmail.com||mgoes@agro.ufg.br1983-40631517-6398opendoar:2024-05-21T19:56:19.008445Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG)true |
dc.title.none.fl_str_mv |
Agrometeorological models for estimating sweet cassava yield Modelos agrometeorológicos para estimar o rendimento de mandioca doce |
title |
Agrometeorological models for estimating sweet cassava yield |
spellingShingle |
Agrometeorological models for estimating sweet cassava yield Brunini Moreto, Victor Manihot esculenta crop modeling climatology. Manihot esculenta Modelagem de culturas Climatologia |
title_short |
Agrometeorological models for estimating sweet cassava yield |
title_full |
Agrometeorological models for estimating sweet cassava yield |
title_fullStr |
Agrometeorological models for estimating sweet cassava yield |
title_full_unstemmed |
Agrometeorological models for estimating sweet cassava yield |
title_sort |
Agrometeorological models for estimating sweet cassava yield |
author |
Brunini Moreto, Victor |
author_facet |
Brunini Moreto, Victor Eduardo de Oliveira Aparecido, Lucas de Souza Rolim, Glauco Reinaldo da Silva Cabral de Moraes, José |
author_role |
author |
author2 |
Eduardo de Oliveira Aparecido, Lucas de Souza Rolim, Glauco Reinaldo da Silva Cabral de Moraes, José |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Brunini Moreto, Victor Eduardo de Oliveira Aparecido, Lucas de Souza Rolim, Glauco Reinaldo da Silva Cabral de Moraes, José |
dc.subject.por.fl_str_mv |
Manihot esculenta crop modeling climatology. Manihot esculenta Modelagem de culturas Climatologia |
topic |
Manihot esculenta crop modeling climatology. Manihot esculenta Modelagem de culturas Climatologia |
description |
Brazil is the fourth largest producer of cassava in the world, with climate conditions being the main factor regulating its production. This study aimed to develop agrometeorological models to estimate the sweet cassava yield for the São Paulo state, as well as to identify which climatic variables have more influence on yield. The models were built with multiple linear regression and classified by the following statistical indexes: lower mean absolute percentage error, higher adjusted determination coefficient and significance (p-value < 0.05). It was observed that the mean air temperature has a great influence on the sweet cassava yield during the whole cycle for all regions in the state. Water deficit and soil water storage were the most influential variables at the beginning and final stages. The models accuracy ranged in 3.11 %, 6.40 %, 6.77 % and 7.15 %, respectively for Registro, Mogi Mirim, Assis and Jaboticabal. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-13 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado por pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufg.br/pat/article/view/50451 |
url |
https://revistas.ufg.br/pat/article/view/50451 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufg.br/pat/article/view/50451/25412 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2018 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics) info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2018 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics) |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Escola de Agronomia - Universidade Federal de Goiás |
publisher.none.fl_str_mv |
Escola de Agronomia - Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; v. 48, n. 1, Jan./Mar. 2018; 43-51 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); v. 48, n. 1, jan./mar. 2018; 43-51 Pesquisa Agropecuária Tropical; v. 48, n. 1, jan./mar. 2018; 43-51 1983-4063 reponame:Pesquisa Agropecuária Tropical (Online) instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Pesquisa Agropecuária Tropical (Online) |
collection |
Pesquisa Agropecuária Tropical (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
aseleguini.pat@gmail.com||mgoes@agro.ufg.br |
_version_ |
1799874819889561600 |