Agrometeorological models for estimating sweet cassava yield

Detalhes bibliográficos
Autor(a) principal: Brunini Moreto, Victor
Data de Publicação: 2018
Outros Autores: Eduardo de Oliveira Aparecido, Lucas, de Souza Rolim, Glauco, Reinaldo da Silva Cabral de Moraes, José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa Agropecuária Tropical (Online)
Texto Completo: https://revistas.ufg.br/pat/article/view/50451
Resumo: Brazil is the fourth largest producer of cassava in the world, with climate conditions being the main factor regulating its production. This study aimed to develop agrometeorological models to estimate the sweet cassava yield for the São Paulo state, as well as to identify which climatic variables have more influence on yield. The models were built with multiple linear regression and classified by the following statistical indexes: lower mean absolute percentage error, higher adjusted determination coefficient and significance (p-value < 0.05). It was observed that the mean air temperature has a great influence on the sweet cassava yield during the whole cycle for all regions in the state. Water deficit and soil water storage were the most influential variables at the beginning and final stages. The models accuracy ranged in 3.11 %, 6.40 %, 6.77 % and 7.15 %, respectively for Registro, Mogi Mirim, Assis and Jaboticabal.
id UFG-6_a7b9d85cb20cb4de83ae75a5b55ba5ce
oai_identifier_str oai:ojs.revistas.ufg.br:article/50451
network_acronym_str UFG-6
network_name_str Pesquisa Agropecuária Tropical (Online)
repository_id_str
spelling Agrometeorological models for estimating sweet cassava yieldModelos agrometeorológicos para estimar o rendimento de mandioca doceManihot esculentacrop modelingclimatology.Manihot esculentaModelagem de culturasClimatologiaBrazil is the fourth largest producer of cassava in the world, with climate conditions being the main factor regulating its production. This study aimed to develop agrometeorological models to estimate the sweet cassava yield for the São Paulo state, as well as to identify which climatic variables have more influence on yield. The models were built with multiple linear regression and classified by the following statistical indexes: lower mean absolute percentage error, higher adjusted determination coefficient and significance (p-value < 0.05). It was observed that the mean air temperature has a great influence on the sweet cassava yield during the whole cycle for all regions in the state. Water deficit and soil water storage were the most influential variables at the beginning and final stages. The models accuracy ranged in 3.11 %, 6.40 %, 6.77 % and 7.15 %, respectively for Registro, Mogi Mirim, Assis and Jaboticabal.O Brasil é o quarto maior produtor mundial de mandioca, tendo as condições climáticas como principais fatores na regulação de sua produção. Objetivou-se desenvolver modelos agrometeorológicos para estimar a produtividade de mandioca doce para o estado de São Paulo, bem como identificar quais variáveis climáticas exercem maior influência sobre a produtividade. Os modelos foram construídos com regressão linear múltipla e classificados pelos seguintes índices estatísticos: menor erro percentual absoluto médio, maior coeficiente de determinação ajustado e significância (p-valor < 0.05). Identificou-se que a temperatura média do ar tem grande influência no rendimento da mandioca durante todo o ciclo, para todas as regiões do estado. O déficit hídrico e o armazenamento de água no solo foram as variáveis mais influentes nos estágios inicial e final. A precisão dos modelos variou em 3,11 %, 6,40 %, 6,77 % e 7,15 %, respectivamente para Registro, Mogi Mirim, Assis e Jaboticabal.Escola de Agronomia - Universidade Federal de Goiás2018-04-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por paresapplication/pdfhttps://revistas.ufg.br/pat/article/view/50451Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; v. 48, n. 1, Jan./Mar. 2018; 43-51Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); v. 48, n. 1, jan./mar. 2018; 43-51Pesquisa Agropecuária Tropical; v. 48, n. 1, jan./mar. 2018; 43-511983-4063reponame:Pesquisa Agropecuária Tropical (Online)instname:Universidade Federal de Goiás (UFG)instacron:UFGenghttps://revistas.ufg.br/pat/article/view/50451/25412Copyright (c) 2018 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics)info:eu-repo/semantics/openAccessBrunini Moreto, VictorEduardo de Oliveira Aparecido, Lucasde Souza Rolim, GlaucoReinaldo da Silva Cabral de Moraes, José2020-07-13T19:00:12Zoai:ojs.revistas.ufg.br:article/50451Revistahttps://revistas.ufg.br/patPUBhttps://revistas.ufg.br/pat/oaiaseleguini.pat@gmail.com||mgoes@agro.ufg.br1983-40631517-6398opendoar:2024-05-21T19:56:19.008445Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG)true
dc.title.none.fl_str_mv Agrometeorological models for estimating sweet cassava yield
Modelos agrometeorológicos para estimar o rendimento de mandioca doce
title Agrometeorological models for estimating sweet cassava yield
spellingShingle Agrometeorological models for estimating sweet cassava yield
Brunini Moreto, Victor
Manihot esculenta
crop modeling
climatology.
Manihot esculenta
Modelagem de culturas
Climatologia
title_short Agrometeorological models for estimating sweet cassava yield
title_full Agrometeorological models for estimating sweet cassava yield
title_fullStr Agrometeorological models for estimating sweet cassava yield
title_full_unstemmed Agrometeorological models for estimating sweet cassava yield
title_sort Agrometeorological models for estimating sweet cassava yield
author Brunini Moreto, Victor
author_facet Brunini Moreto, Victor
Eduardo de Oliveira Aparecido, Lucas
de Souza Rolim, Glauco
Reinaldo da Silva Cabral de Moraes, José
author_role author
author2 Eduardo de Oliveira Aparecido, Lucas
de Souza Rolim, Glauco
Reinaldo da Silva Cabral de Moraes, José
author2_role author
author
author
dc.contributor.author.fl_str_mv Brunini Moreto, Victor
Eduardo de Oliveira Aparecido, Lucas
de Souza Rolim, Glauco
Reinaldo da Silva Cabral de Moraes, José
dc.subject.por.fl_str_mv Manihot esculenta
crop modeling
climatology.
Manihot esculenta
Modelagem de culturas
Climatologia
topic Manihot esculenta
crop modeling
climatology.
Manihot esculenta
Modelagem de culturas
Climatologia
description Brazil is the fourth largest producer of cassava in the world, with climate conditions being the main factor regulating its production. This study aimed to develop agrometeorological models to estimate the sweet cassava yield for the São Paulo state, as well as to identify which climatic variables have more influence on yield. The models were built with multiple linear regression and classified by the following statistical indexes: lower mean absolute percentage error, higher adjusted determination coefficient and significance (p-value < 0.05). It was observed that the mean air temperature has a great influence on the sweet cassava yield during the whole cycle for all regions in the state. Water deficit and soil water storage were the most influential variables at the beginning and final stages. The models accuracy ranged in 3.11 %, 6.40 %, 6.77 % and 7.15 %, respectively for Registro, Mogi Mirim, Assis and Jaboticabal.
publishDate 2018
dc.date.none.fl_str_mv 2018-04-13
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado por pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufg.br/pat/article/view/50451
url https://revistas.ufg.br/pat/article/view/50451
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufg.br/pat/article/view/50451/25412
dc.rights.driver.fl_str_mv Copyright (c) 2018 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics)
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics)
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Escola de Agronomia - Universidade Federal de Goiás
publisher.none.fl_str_mv Escola de Agronomia - Universidade Federal de Goiás
dc.source.none.fl_str_mv Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; v. 48, n. 1, Jan./Mar. 2018; 43-51
Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); v. 48, n. 1, jan./mar. 2018; 43-51
Pesquisa Agropecuária Tropical; v. 48, n. 1, jan./mar. 2018; 43-51
1983-4063
reponame:Pesquisa Agropecuária Tropical (Online)
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Pesquisa Agropecuária Tropical (Online)
collection Pesquisa Agropecuária Tropical (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv aseleguini.pat@gmail.com||mgoes@agro.ufg.br
_version_ 1799874819889561600