Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais Brasileiros de Estudos Turísticos |
Texto Completo: | https://periodicos.ufjf.br/index.php/abet/article/view/39150 |
Resumo: | This article aims to analyze how the emotional, mental, and sentimental demands related with hospitality and hostility were developed during the pandemic of the COVID-19 in Brazil. As methological procedures was applied sequential mixed methods research. Firstly, about 1,000 pieces of news were collected from two Brazilian websites to be able to manually classify them in the feelings of hospitality and hostility. We use a machine learning supervisor analysis following a sentiment analysis technique. Secondly, the data were used for training in eight machine learning algorithms, through supervised analysis, being chosen the logistic regression for the data classification, because it fits better to the data, reaching 72% of accuracy. The data collected in two years of the pandemic, thus approximately 221,000 news were then classified using the chosen algorithm, which allowed the generation of graphics and analysis through inferential statistics, through the evolution of feelings of hospitality and hostility. The results indicate that in situations such as the COVID-19 pandemic, people tend to behave hostilely, which leads to a lack of hospitality. The implications of this study are related to the ability to materialize, through the concepts of hospitality and hostility, the perception of visitors, guests, among other people, involved in the tourism sector. Therefore, the sentiment analysis from social media and news affected the tourism and hospitality industry. |
id |
UFJF-2_a68506e9a8361ea0e493b6c0ed56821e |
---|---|
oai_identifier_str |
oai:periodicos.ufjf.br:article/39150 |
network_acronym_str |
UFJF-2 |
network_name_str |
Anais Brasileiros de Estudos Turísticos |
repository_id_str |
|
spelling |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourismApprentissage automatique et analyse de sentiments pour évaluer l'évolution de la pandémie de la COVID-19 et ses impacts sur le tourismeAprendizado de máquina e análise de sentimentos para avaliar a evolução da pandemia de COVID-19 e os impactos no turismoArtificial IntelligenceHospitality in TourismSentiment AnalysisHostility in TourismIntelligence ArtificielleHospitalité dans le TourismeHostilité dans le TourismeAnalyse de SentimentsInteligência ArtificialHospitalidade no TurismoHostilidade no TurismoAnálise de SentimentosThis article aims to analyze how the emotional, mental, and sentimental demands related with hospitality and hostility were developed during the pandemic of the COVID-19 in Brazil. As methological procedures was applied sequential mixed methods research. Firstly, about 1,000 pieces of news were collected from two Brazilian websites to be able to manually classify them in the feelings of hospitality and hostility. We use a machine learning supervisor analysis following a sentiment analysis technique. Secondly, the data were used for training in eight machine learning algorithms, through supervised analysis, being chosen the logistic regression for the data classification, because it fits better to the data, reaching 72% of accuracy. The data collected in two years of the pandemic, thus approximately 221,000 news were then classified using the chosen algorithm, which allowed the generation of graphics and analysis through inferential statistics, through the evolution of feelings of hospitality and hostility. The results indicate that in situations such as the COVID-19 pandemic, people tend to behave hostilely, which leads to a lack of hospitality. The implications of this study are related to the ability to materialize, through the concepts of hospitality and hostility, the perception of visitors, guests, among other people, involved in the tourism sector. Therefore, the sentiment analysis from social media and news affected the tourism and hospitality industry.Cet article vise à analyser comment les demandes émotionnelles, mentales et sentimentales liées à l'hospitalité et à l'hostilité se sont développées pendant la pandémie de la COVID-19 au Brésil. Des procédures méthodologiques ont été appliquées à travers une recherche séquentielle à méthodes mixtes. Tout d'abord, environ 1 000 articles ont été collectés sur deux sites web brésiliens pour être classifiés manuellement selon les sentiments d'hospitalité et d'hostilité. Nous avons utilisé une analyse de sentiment supervisée par apprentissage automatique. Ensuite, les données ont été utilisées pour entraîner huit algorithmes d'apprentissage automatique, à travers une analyse supervisée, la régression logistique ayant été choisie pour la classification des données, car elle correspond mieux aux données, atteignant 72% de précision. Les données collectées sur deux ans de pandémie, soit environ 221 000 articles, ont ensuite été classées en utilisant l'algorithme choisi, ce qui a permis de générer des graphiques et des analyses à l'aide de statistiques inférentielles, montrant l'évolution des sentiments d'hospitalité et d'hostilité. Les résultats indiquent que dans des situations telles que la pandémie de la COVID-19, les gens ont tendance à adopter un comportement hostile, ce qui conduit à un manque d'hospitalité. Les implications de cette étude sont liées à la capacité de matérialiser, à travers les concepts d'hospitalité et d'hostilité, la perception des visiteurs, des clients et d'autres personnes impliquées dans le secteur du tourisme. Ainsi, l'analyse de sentiments à partir des médias sociaux et des actualités a affecté l'industrie du tourisme et de l'hospitalité.Este artigo tem como objetivo analisar como as demandas emocionais, mentais e sentimentais relacionadas à hospitalidade e hostilidade se desenvolveram durante a pandemia de COVID-19 no Brasil. Procedimentos metodológicos foram aplicados por meio de pesquisa sequencial de métodos mistos. Primeiramente, cerca de 1.000 notícias foram coletadas em dois sites brasileiros para serem classificadas manualmente nos sentimentos de hospitalidade e hostilidade. Foi utilizada uma análise de sentimento supervisionada de aprendizado de máquina. Em segundo lugar, os dados foram usados para o treinamento em oito algoritmos de aprendizado de máquina, por meio de análise supervisionada, sendo escolhida a regressão logística para a classificação dos dados, por se adequar melhor aos dados, alcançando 72% de precisão. Os dados coletados ao longo de dois anos da pandemia, aproximadamente 221.000 notícias, foram então classificados usando o algoritmo escolhido, o que permitiu a geração de gráficos e análises por meio de estatísticas inferenciais, mostrando a evolução dos sentimentos de hospitalidade e hostilidade. Os resultados indicam que em situações como a pandemia de COVID-19, as pessoas tendem a se comportar de maneira hostil, o que leva à falta de hospitalidade. As implicações deste estudo estão relacionadas à capacidade de materializar, por meio dos conceitos de hospitalidade e hostilidade, a percepção de visitantes, hóspedes e outras pessoas envolvidas no setor de turismo. Portanto, a análise de sentimentos provenientes de mídias sociais e notícias afetou a indústria do turismo e da hospitalidade.Universidade Federal de Juiz de Fora/UFJF2023-12-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufjf.br/index.php/abet/article/view/3915010.5281/zenodo.10325571Anais Brasileiros de Estudos Turísticos; ABET, Vol. 13, Regular Issue (2023)Anais Brasileiros de Estudos Turísticos; ABET, Vol. 13, Regular Issue (2023)Anais Brasileiros de Estudos Turísticos; ABET, Vol. 13, Regular Issue (2023)2238-2925reponame:Anais Brasileiros de Estudos Turísticosinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFenghttps://periodicos.ufjf.br/index.php/abet/article/view/39150/26753Copyright (c) 2023 Anais Brasileiros de Estudos Turísticoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOliveira, Paulo Sergio Gonçalves deWada, Elizabeth KyokoLopes, Anderson SoaresSilva, Luciano Ferreira da2024-03-22T21:11:43Zoai:periodicos.ufjf.br:article/39150Revistahttps://periodicos.ufjf.br/index.php/abet/indexPUBhttps://periodicos.ufjf.br/index.php/abet/oairevista.abet@ufjf.edu.br || thiago.pimentel@ufjf.edu.br2238-29252238-2925opendoar:2024-03-22T21:11:43Anais Brasileiros de Estudos Turísticos - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.none.fl_str_mv |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism Apprentissage automatique et analyse de sentiments pour évaluer l'évolution de la pandémie de la COVID-19 et ses impacts sur le tourisme Aprendizado de máquina e análise de sentimentos para avaliar a evolução da pandemia de COVID-19 e os impactos no turismo |
title |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism |
spellingShingle |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism Oliveira, Paulo Sergio Gonçalves de Artificial Intelligence Hospitality in Tourism Sentiment Analysis Hostility in Tourism Intelligence Artificielle Hospitalité dans le Tourisme Hostilité dans le Tourisme Analyse de Sentiments Inteligência Artificial Hospitalidade no Turismo Hostilidade no Turismo Análise de Sentimentos |
title_short |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism |
title_full |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism |
title_fullStr |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism |
title_full_unstemmed |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism |
title_sort |
Machine learning and sentiment analysis to assess the evolution of the COVID-19 pandemic and the impacts on tourism |
author |
Oliveira, Paulo Sergio Gonçalves de |
author_facet |
Oliveira, Paulo Sergio Gonçalves de Wada, Elizabeth Kyoko Lopes, Anderson Soares Silva, Luciano Ferreira da |
author_role |
author |
author2 |
Wada, Elizabeth Kyoko Lopes, Anderson Soares Silva, Luciano Ferreira da |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Oliveira, Paulo Sergio Gonçalves de Wada, Elizabeth Kyoko Lopes, Anderson Soares Silva, Luciano Ferreira da |
dc.subject.por.fl_str_mv |
Artificial Intelligence Hospitality in Tourism Sentiment Analysis Hostility in Tourism Intelligence Artificielle Hospitalité dans le Tourisme Hostilité dans le Tourisme Analyse de Sentiments Inteligência Artificial Hospitalidade no Turismo Hostilidade no Turismo Análise de Sentimentos |
topic |
Artificial Intelligence Hospitality in Tourism Sentiment Analysis Hostility in Tourism Intelligence Artificielle Hospitalité dans le Tourisme Hostilité dans le Tourisme Analyse de Sentiments Inteligência Artificial Hospitalidade no Turismo Hostilidade no Turismo Análise de Sentimentos |
description |
This article aims to analyze how the emotional, mental, and sentimental demands related with hospitality and hostility were developed during the pandemic of the COVID-19 in Brazil. As methological procedures was applied sequential mixed methods research. Firstly, about 1,000 pieces of news were collected from two Brazilian websites to be able to manually classify them in the feelings of hospitality and hostility. We use a machine learning supervisor analysis following a sentiment analysis technique. Secondly, the data were used for training in eight machine learning algorithms, through supervised analysis, being chosen the logistic regression for the data classification, because it fits better to the data, reaching 72% of accuracy. The data collected in two years of the pandemic, thus approximately 221,000 news were then classified using the chosen algorithm, which allowed the generation of graphics and analysis through inferential statistics, through the evolution of feelings of hospitality and hostility. The results indicate that in situations such as the COVID-19 pandemic, people tend to behave hostilely, which leads to a lack of hospitality. The implications of this study are related to the ability to materialize, through the concepts of hospitality and hostility, the perception of visitors, guests, among other people, involved in the tourism sector. Therefore, the sentiment analysis from social media and news affected the tourism and hospitality industry. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-08 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufjf.br/index.php/abet/article/view/39150 10.5281/zenodo.10325571 |
url |
https://periodicos.ufjf.br/index.php/abet/article/view/39150 |
identifier_str_mv |
10.5281/zenodo.10325571 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufjf.br/index.php/abet/article/view/39150/26753 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Anais Brasileiros de Estudos Turísticos https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Anais Brasileiros de Estudos Turísticos https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora/UFJF |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora/UFJF |
dc.source.none.fl_str_mv |
Anais Brasileiros de Estudos Turísticos; ABET, Vol. 13, Regular Issue (2023) Anais Brasileiros de Estudos Turísticos; ABET, Vol. 13, Regular Issue (2023) Anais Brasileiros de Estudos Turísticos; ABET, Vol. 13, Regular Issue (2023) 2238-2925 reponame:Anais Brasileiros de Estudos Turísticos instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Anais Brasileiros de Estudos Turísticos |
collection |
Anais Brasileiros de Estudos Turísticos |
repository.name.fl_str_mv |
Anais Brasileiros de Estudos Turísticos - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
revista.abet@ufjf.edu.br || thiago.pimentel@ufjf.edu.br |
_version_ |
1798044891685584896 |