Congruência modular nas séries finais do ensino fundamental
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/1441 |
Resumo: | Este trabalho é voltado para professores que atuam nas séries finais do Ensino Fundamental. Tem como objetivo mostrar que é possível introduzir o estudo de Congruência Modular nesse segmento de ensino, buscando facilitar a resolução de diversas situações-problema. A motivação para escolha desse tema é que há a possibilidade de tornar mais simples a resolução de muitos exercícios trabalhados nessa etapa de ensino e que são inclusive cobrados em provas de admissão à escolas militares e em olimpíadas de Matemática para esse nível de escolaridade. Inicialmente é feita uma breve síntese do conjunto dos Números Inteiros, com suas operações básicas, relembrando também o conceito de números primos, onde é apresentado o crivo de Eratóstenes; o mmc (mínimo múltiplo comum) e o mdc (máximo divisor comum), juntamente com o Algoritmo de Euclides. Apresenta-se alguns exemplos de situações-problema e exercícios resolvidos envolvendo restos deixados por uma divisão para então, em seguida, ser dada a definição de congruência modular. Finalmente, são apresentadas sugestões de exercícios para serem trabalhados em sala de aula, com uma breve resolução. |
id |
UFJF_35e5ea7a6654c90ce0da8dd2a6600574 |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/1441 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Faria, Luiz Fernando de Oliveirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4735580H9Toon, Eduardhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4248149J6Araujo, Anderson Luis Albuquerque dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4745148J8http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8540741E7Souza, Leticia Vasconcellos de2016-06-15T13:12:10Z2016-05-102016-06-15T13:12:10Z2015-08-14https://repositorio.ufjf.br/jspui/handle/ufjf/1441Este trabalho é voltado para professores que atuam nas séries finais do Ensino Fundamental. Tem como objetivo mostrar que é possível introduzir o estudo de Congruência Modular nesse segmento de ensino, buscando facilitar a resolução de diversas situações-problema. A motivação para escolha desse tema é que há a possibilidade de tornar mais simples a resolução de muitos exercícios trabalhados nessa etapa de ensino e que são inclusive cobrados em provas de admissão à escolas militares e em olimpíadas de Matemática para esse nível de escolaridade. Inicialmente é feita uma breve síntese do conjunto dos Números Inteiros, com suas operações básicas, relembrando também o conceito de números primos, onde é apresentado o crivo de Eratóstenes; o mmc (mínimo múltiplo comum) e o mdc (máximo divisor comum), juntamente com o Algoritmo de Euclides. Apresenta-se alguns exemplos de situações-problema e exercícios resolvidos envolvendo restos deixados por uma divisão para então, em seguida, ser dada a definição de congruência modular. Finalmente, são apresentadas sugestões de exercícios para serem trabalhados em sala de aula, com uma breve resolução.The aims of this work is teachers working in the final grades of elementary school. It aspires to show that it is possible to introduce the study of Modular congruence this educational segment, seeking to facilitate the resolution of numerous problem situations. The motivation for choosing this theme is that there is the possibility to make it simpler to solve many problems worked at this stage of education and are even requested for admittance exams to military schools and mathematical Olympiads for that level of education. We begin with a brief summary about integer numbers, their basic operations, also recalling the concept of prime numbers, where the sieve of Eratosthenes is presented; the lcm (least common multiple) and the gcd (greatest common divisor), along with the Euclidean algorithm. We present some examples of problem situations and solved exercises involving debris left by a division and then, we give the definition of modular congruence . Finally , we present suggestions for exercises to be worked in the classroom, with a short resolution.porUniversidade Federal de Juiz de ForaMestrado Profissional em Matemática (PROFMAT)UFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICACongruência ModularEnsino FundamentalNúmeros primosMínimo múltiplo comum (mmc)Máximo divisor comum (mdc)Divisão euclidianaModular congruenceElementary SchoolPrime numbersLeast Common Multiple (lcm)Greatest common divisor (gcm)Euclidean divisionCongruência modular nas séries finais do ensino fundamentalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTleticiavasconcellosdesouza.pdf.txtleticiavasconcellosdesouza.pdf.txtExtracted texttext/plain49038https://repositorio.ufjf.br/jspui/bitstream/ufjf/1441/3/leticiavasconcellosdesouza.pdf.txtb4bf87a986558e935ad5c080a4517bebMD53THUMBNAILleticiavasconcellosdesouza.pdf.jpgleticiavasconcellosdesouza.pdf.jpgGenerated Thumbnailimage/jpeg1117https://repositorio.ufjf.br/jspui/bitstream/ufjf/1441/4/leticiavasconcellosdesouza.pdf.jpgab5b1d0cacb58e6bacac6c8fcc756d89MD54ORIGINALleticiavasconcellosdesouza.pdfleticiavasconcellosdesouza.pdfapplication/pdf334599https://repositorio.ufjf.br/jspui/bitstream/ufjf/1441/1/leticiavasconcellosdesouza.pdfecaf1358f31b66f2a2e8740f4db33535MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81866https://repositorio.ufjf.br/jspui/bitstream/ufjf/1441/2/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD52ufjf/14412019-11-07 11:09:50.386oai:hermes.cpd.ufjf.br:ufjf/1441TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-11-07T13:09:50Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Congruência modular nas séries finais do ensino fundamental |
title |
Congruência modular nas séries finais do ensino fundamental |
spellingShingle |
Congruência modular nas séries finais do ensino fundamental Souza, Leticia Vasconcellos de CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Congruência Modular Ensino Fundamental Números primos Mínimo múltiplo comum (mmc) Máximo divisor comum (mdc) Divisão euclidiana Modular congruence Elementary School Prime numbers Least Common Multiple (lcm) Greatest common divisor (gcm) Euclidean division |
title_short |
Congruência modular nas séries finais do ensino fundamental |
title_full |
Congruência modular nas séries finais do ensino fundamental |
title_fullStr |
Congruência modular nas séries finais do ensino fundamental |
title_full_unstemmed |
Congruência modular nas séries finais do ensino fundamental |
title_sort |
Congruência modular nas séries finais do ensino fundamental |
author |
Souza, Leticia Vasconcellos de |
author_facet |
Souza, Leticia Vasconcellos de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Faria, Luiz Fernando de Oliveira |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4735580H9 |
dc.contributor.referee1.fl_str_mv |
Toon, Eduard |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4248149J6 |
dc.contributor.referee2.fl_str_mv |
Araujo, Anderson Luis Albuquerque de |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4745148J8 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8540741E7 |
dc.contributor.author.fl_str_mv |
Souza, Leticia Vasconcellos de |
contributor_str_mv |
Faria, Luiz Fernando de Oliveira Toon, Eduard Araujo, Anderson Luis Albuquerque de |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Congruência Modular Ensino Fundamental Números primos Mínimo múltiplo comum (mmc) Máximo divisor comum (mdc) Divisão euclidiana Modular congruence Elementary School Prime numbers Least Common Multiple (lcm) Greatest common divisor (gcm) Euclidean division |
dc.subject.por.fl_str_mv |
Congruência Modular Ensino Fundamental Números primos Mínimo múltiplo comum (mmc) Máximo divisor comum (mdc) Divisão euclidiana Modular congruence Elementary School Prime numbers Least Common Multiple (lcm) Greatest common divisor (gcm) Euclidean division |
description |
Este trabalho é voltado para professores que atuam nas séries finais do Ensino Fundamental. Tem como objetivo mostrar que é possível introduzir o estudo de Congruência Modular nesse segmento de ensino, buscando facilitar a resolução de diversas situações-problema. A motivação para escolha desse tema é que há a possibilidade de tornar mais simples a resolução de muitos exercícios trabalhados nessa etapa de ensino e que são inclusive cobrados em provas de admissão à escolas militares e em olimpíadas de Matemática para esse nível de escolaridade. Inicialmente é feita uma breve síntese do conjunto dos Números Inteiros, com suas operações básicas, relembrando também o conceito de números primos, onde é apresentado o crivo de Eratóstenes; o mmc (mínimo múltiplo comum) e o mdc (máximo divisor comum), juntamente com o Algoritmo de Euclides. Apresenta-se alguns exemplos de situações-problema e exercícios resolvidos envolvendo restos deixados por uma divisão para então, em seguida, ser dada a definição de congruência modular. Finalmente, são apresentadas sugestões de exercícios para serem trabalhados em sala de aula, com uma breve resolução. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-08-14 |
dc.date.accessioned.fl_str_mv |
2016-06-15T13:12:10Z |
dc.date.available.fl_str_mv |
2016-05-10 2016-06-15T13:12:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/1441 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/1441 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora |
dc.publisher.program.fl_str_mv |
Mestrado Profissional em Matemática (PROFMAT) |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/1441/3/leticiavasconcellosdesouza.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/1441/4/leticiavasconcellosdesouza.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/1441/1/leticiavasconcellosdesouza.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/1441/2/license.txt |
bitstream.checksum.fl_str_mv |
b4bf87a986558e935ad5c080a4517beb ab5b1d0cacb58e6bacac6c8fcc756d89 ecaf1358f31b66f2a2e8740f4db33535 43cd690d6a359e86c1fe3d5b7cba0c9b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193878126198784 |