Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/11481 |
Resumo: | Devido às mudanças climáticas, até 2040 os edifícios podem vir a consumir 30% mais energia, sendo o desempenho energético o elemento chave para o alcance do desenvolvimento sustentável no setor da construção civil. Custos de projeto, dano ambiental e características construtivas como geometria, propriedades térmicas dos materiais e condições climáticas são necessárias para avaliar a performance energética de uma edificação. Uma forma de solucionar este problema de avaliação é a aplicação de Métodos de Aprendizado de Máquina para estimar uma resposta a partir de uma entrada de dados. O uso de Métodos de Aprendizado de Máquina pode vir a auxiliar especialistas da área da construção civil na análise de cenários ainda na fase inicial do projeto e trazer economia para a edificação. O presente trabalho avalia a aplicação dos modelos Elastic Net, Máquina de Aprendizado Extremo e Extreme Gradient Boosting para a previsão das cargas de aquecimento e resfriamento em edificações residenciais. Duas bases de dados são utilizadas para avaliar o desempenho dos métodos, contendo variáveis geométricas de entrada e duas variáveis térmicas de saída. Para a seleção de parâmetros dos métodos, o algoritmo de otimização Evolução Diferencial foi aplicado, com o objetivo de encontrar os conjuntos de hiperparâmetros que reforcem as capacidades preditivas dos modelos. As comparações dos resultados ocorreram através do uso das métricas MAE, MAPE, RMSE e R2. Os resultados mostraram que o método Extreme Gradient Boosting obteve uma melhor performance dentre os métodos testados e também em comparação com a literatura, apresentando os menores valores para as métricas de erro e diferença significativa nos testes estatísticos. Além disso, o algoritmo de Evolução Diferencial se mostrou eficaz para a otimização dos parâmetros dos modelos testados, podendo vir a ser aplicado também a outros modelos da literatura. Dessa forma, a combinação dos métodos Evolução Diferencial e Extreme Gradient Boosting pode vir a ser aplicada na previsão das cargas térmicas em edificações, auxiliando em projetos que visem economia de energia e sustentabilidade. |
id |
UFJF_465e7cfe9c0332f89434319807a5ad5d |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/11481 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Goliatt, Priscila Vanessa Zabala Caprileshttp://lattes.cnpq.br/3074561832181610Fonseca, Leonardo Goliatt dahttp://lattes.cnpq.br/9030707448549156Borges, Carlos Cristiano Hasencleverhttp://lattes.cnpq.br/2487554612123446Barbosa, Sabrina andradehttp://lattes.cnpq.br/4420667624995365http://lattes.cnpq.br/2223382675951164Silva, Gisele Goulart Tavares da2019-12-19T16:18:37Z2019-12-182019-12-19T16:18:37Z2019-09-12https://repositorio.ufjf.br/jspui/handle/ufjf/11481Devido às mudanças climáticas, até 2040 os edifícios podem vir a consumir 30% mais energia, sendo o desempenho energético o elemento chave para o alcance do desenvolvimento sustentável no setor da construção civil. Custos de projeto, dano ambiental e características construtivas como geometria, propriedades térmicas dos materiais e condições climáticas são necessárias para avaliar a performance energética de uma edificação. Uma forma de solucionar este problema de avaliação é a aplicação de Métodos de Aprendizado de Máquina para estimar uma resposta a partir de uma entrada de dados. O uso de Métodos de Aprendizado de Máquina pode vir a auxiliar especialistas da área da construção civil na análise de cenários ainda na fase inicial do projeto e trazer economia para a edificação. O presente trabalho avalia a aplicação dos modelos Elastic Net, Máquina de Aprendizado Extremo e Extreme Gradient Boosting para a previsão das cargas de aquecimento e resfriamento em edificações residenciais. Duas bases de dados são utilizadas para avaliar o desempenho dos métodos, contendo variáveis geométricas de entrada e duas variáveis térmicas de saída. Para a seleção de parâmetros dos métodos, o algoritmo de otimização Evolução Diferencial foi aplicado, com o objetivo de encontrar os conjuntos de hiperparâmetros que reforcem as capacidades preditivas dos modelos. As comparações dos resultados ocorreram através do uso das métricas MAE, MAPE, RMSE e R2. Os resultados mostraram que o método Extreme Gradient Boosting obteve uma melhor performance dentre os métodos testados e também em comparação com a literatura, apresentando os menores valores para as métricas de erro e diferença significativa nos testes estatísticos. Além disso, o algoritmo de Evolução Diferencial se mostrou eficaz para a otimização dos parâmetros dos modelos testados, podendo vir a ser aplicado também a outros modelos da literatura. Dessa forma, a combinação dos métodos Evolução Diferencial e Extreme Gradient Boosting pode vir a ser aplicada na previsão das cargas térmicas em edificações, auxiliando em projetos que visem economia de energia e sustentabilidade.Due to climate change, by 2040 buildings may consume 20% more energy, with energy performance being the key element for achieving sustainable development in the building sector. Design costs, environmental damage and constructive characteristics, such as geometry, thermal properties of materials and weather conditions, are necessary to assess the energy performance of a building. One way to solve this problem is to apply Machine Learning Methods to estimate a response from data. The use of Machine Learning Methods can assist construction specialists in scenario analysis at an early stage of the project and bring savings to the building. The present work evaluates the application of the Elastic Net, Extreme Learning Machine and Extreme Gradient Boosting models for the forecasting of heating and cooling loads in residential buildings. Two databases are used to evaluate the performance of the methods, including geometric input variables and two thermal output variables. For the selection of method parameters, the Differential Evolution optimization algorithm was applied to find the sets of hyperparameters that reinforce the predictive capabilities of the models. Comparisons of the results were made using the MAE, MAPE, RMSE and R2 metrics. The results showed that the Extreme Gradient Boosting achieved a better performance among the tested methods and also compared to the literature, presenting the lowest values for the error metrics and significant difference in the statistical tests. In addition, the Differential Evolution algorithm showed to be effective for the optimization of the parameters of the tested models, and may also be applied to other models in the literature. Thus, a combination of Differential Evolution and Extreme Gradient Boosting methods can be applied to predict thermal loads in buildings, assisting in projects that aim at energy saving and sustainability.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRAEficiência energéticaCargas de aquecimento e resfriamentoExtreme gradient boostingEvolução diferencialSeleção de modelosEnergy efficiencyHeating and cooling loadsExtreme gradient boostingDifferential evolutionModel selectionAplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTgiselegoularttavaresdasilva.pdf.txtgiselegoularttavaresdasilva.pdf.txtExtracted texttext/plain152666https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/4/giselegoularttavaresdasilva.pdf.txtbb39ec939750922f3cc3ac63faae0d86MD54THUMBNAILgiselegoularttavaresdasilva.pdf.jpggiselegoularttavaresdasilva.pdf.jpgGenerated Thumbnailimage/jpeg1171https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/5/giselegoularttavaresdasilva.pdf.jpg9b0098270e1a45478b5ef05c030a2824MD55ORIGINALgiselegoularttavaresdasilva.pdfgiselegoularttavaresdasilva.pdfapplication/pdf1668942https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/1/giselegoularttavaresdasilva.pdf92180c529efa988f73a2ed00f63b4d85MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ufjf/114812019-12-20 04:06:46.39oai:hermes.cpd.ufjf.br:ufjf/11481Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-12-20T06:06:46Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações |
title |
Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações |
spellingShingle |
Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações Silva, Gisele Goulart Tavares da CNPQ::CIENCIAS EXATAS E DA TERRA Eficiência energética Cargas de aquecimento e resfriamento Extreme gradient boosting Evolução diferencial Seleção de modelos Energy efficiency Heating and cooling loads Extreme gradient boosting Differential evolution Model selection |
title_short |
Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações |
title_full |
Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações |
title_fullStr |
Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações |
title_full_unstemmed |
Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações |
title_sort |
Aplicação de técnicas de inteligência computacional para a previsão de cargas de aquecimento e resfriamento em edificações |
author |
Silva, Gisele Goulart Tavares da |
author_facet |
Silva, Gisele Goulart Tavares da |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Goliatt, Priscila Vanessa Zabala Capriles |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3074561832181610 |
dc.contributor.advisor-co1.fl_str_mv |
Fonseca, Leonardo Goliatt da |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9030707448549156 |
dc.contributor.referee1.fl_str_mv |
Borges, Carlos Cristiano Hasenclever |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/2487554612123446 |
dc.contributor.referee2.fl_str_mv |
Barbosa, Sabrina andrade |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4420667624995365 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2223382675951164 |
dc.contributor.author.fl_str_mv |
Silva, Gisele Goulart Tavares da |
contributor_str_mv |
Goliatt, Priscila Vanessa Zabala Capriles Fonseca, Leonardo Goliatt da Borges, Carlos Cristiano Hasenclever Barbosa, Sabrina andrade |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA Eficiência energética Cargas de aquecimento e resfriamento Extreme gradient boosting Evolução diferencial Seleção de modelos Energy efficiency Heating and cooling loads Extreme gradient boosting Differential evolution Model selection |
dc.subject.por.fl_str_mv |
Eficiência energética Cargas de aquecimento e resfriamento Extreme gradient boosting Evolução diferencial Seleção de modelos Energy efficiency Heating and cooling loads Extreme gradient boosting Differential evolution Model selection |
description |
Devido às mudanças climáticas, até 2040 os edifícios podem vir a consumir 30% mais energia, sendo o desempenho energético o elemento chave para o alcance do desenvolvimento sustentável no setor da construção civil. Custos de projeto, dano ambiental e características construtivas como geometria, propriedades térmicas dos materiais e condições climáticas são necessárias para avaliar a performance energética de uma edificação. Uma forma de solucionar este problema de avaliação é a aplicação de Métodos de Aprendizado de Máquina para estimar uma resposta a partir de uma entrada de dados. O uso de Métodos de Aprendizado de Máquina pode vir a auxiliar especialistas da área da construção civil na análise de cenários ainda na fase inicial do projeto e trazer economia para a edificação. O presente trabalho avalia a aplicação dos modelos Elastic Net, Máquina de Aprendizado Extremo e Extreme Gradient Boosting para a previsão das cargas de aquecimento e resfriamento em edificações residenciais. Duas bases de dados são utilizadas para avaliar o desempenho dos métodos, contendo variáveis geométricas de entrada e duas variáveis térmicas de saída. Para a seleção de parâmetros dos métodos, o algoritmo de otimização Evolução Diferencial foi aplicado, com o objetivo de encontrar os conjuntos de hiperparâmetros que reforcem as capacidades preditivas dos modelos. As comparações dos resultados ocorreram através do uso das métricas MAE, MAPE, RMSE e R2. Os resultados mostraram que o método Extreme Gradient Boosting obteve uma melhor performance dentre os métodos testados e também em comparação com a literatura, apresentando os menores valores para as métricas de erro e diferença significativa nos testes estatísticos. Além disso, o algoritmo de Evolução Diferencial se mostrou eficaz para a otimização dos parâmetros dos modelos testados, podendo vir a ser aplicado também a outros modelos da literatura. Dessa forma, a combinação dos métodos Evolução Diferencial e Extreme Gradient Boosting pode vir a ser aplicada na previsão das cargas térmicas em edificações, auxiliando em projetos que visem economia de energia e sustentabilidade. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-12-19T16:18:37Z |
dc.date.available.fl_str_mv |
2019-12-18 2019-12-19T16:18:37Z |
dc.date.issued.fl_str_mv |
2019-09-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/11481 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/11481 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Modelagem Computacional |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/4/giselegoularttavaresdasilva.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/5/giselegoularttavaresdasilva.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/1/giselegoularttavaresdasilva.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/2/license_rdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/11481/3/license.txt |
bitstream.checksum.fl_str_mv |
bb39ec939750922f3cc3ac63faae0d86 9b0098270e1a45478b5ef05c030a2824 92180c529efa988f73a2ed00f63b4d85 e39d27027a6cc9cb039ad269a5db8e34 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813194010979729408 |