Classificação de imagens de bovinos utilizando redes neurais convolucionais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/16587 |
Resumo: | As atividades pecuárias contam cada vez mais com tecnologias da informação que podem contribuir em diversas etapas da cadeia produtiva do setor. Em particular, muitos problemas de Visão Computacional voltados para o setor pecuário vêm sendo abordados através de técnicas de aprendizado profundo e os resultados atingidos têm sido satisfatórios, demonstrando o potencial que tais técnicas possuem para beneficiar essas atividades. Além disso, abordagens desse tipo podem ser muito vantajosas, já que se tratam de aplicações não invasivas e que podem gerar resultados em tempo real. Dessa forma, este trabalho propõe o desenvolvimento de três modelos de Redes Neurais Convolucionais (Convolutional Neural Networks - CNNs) para classificação de imagens de faces de bovinos de acordo com: categoria, pose e raça. Foi realizada uma série de experimentos, dos quais os melhores resultados são reportados neste trabalho. A partir de uma série de experimentos e avaliações, foi possível atingir resultados satisfatórios para os casos abordados. Mais especificamente, os modelos classificadores de pose e categoria atingiram acurácias superiores a 90%, enquanto os modelos gerados para o problema de raça atingiram resultados mais desfavoráveis (em torno de 83%), o que demonstrou que se trata de um problema mais desafiador. Ao analisar todos os resultados, verificou-se o potencial que tais abordagens possuem para atingir resultados ainda melhores em trabalhos futuros. |
id |
UFJF_6adca1e033bfba253c51fdf6a833a3e5 |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/16587 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Maciel, Luiz Maurílio da Silvahttp://lattes.cnpq.br/4491455337486151Carvalho, Bruno Camposhttp://lattes.cnpq.br/1135384515652643Vieira, Marcelo Bernardeshttp://lattes.cnpq.br/0858482819476716Villela, Saulo Moraeshttp://lattes.cnpq.br/3358075178615535http://lattes.cnpq.br/Maia, Brian Luís Coimbra2024-02-01T16:10:15Z2024-01-302024-02-01T16:10:15Z2023-01-12https://repositorio.ufjf.br/jspui/handle/ufjf/16587As atividades pecuárias contam cada vez mais com tecnologias da informação que podem contribuir em diversas etapas da cadeia produtiva do setor. Em particular, muitos problemas de Visão Computacional voltados para o setor pecuário vêm sendo abordados através de técnicas de aprendizado profundo e os resultados atingidos têm sido satisfatórios, demonstrando o potencial que tais técnicas possuem para beneficiar essas atividades. Além disso, abordagens desse tipo podem ser muito vantajosas, já que se tratam de aplicações não invasivas e que podem gerar resultados em tempo real. Dessa forma, este trabalho propõe o desenvolvimento de três modelos de Redes Neurais Convolucionais (Convolutional Neural Networks - CNNs) para classificação de imagens de faces de bovinos de acordo com: categoria, pose e raça. Foi realizada uma série de experimentos, dos quais os melhores resultados são reportados neste trabalho. A partir de uma série de experimentos e avaliações, foi possível atingir resultados satisfatórios para os casos abordados. Mais especificamente, os modelos classificadores de pose e categoria atingiram acurácias superiores a 90%, enquanto os modelos gerados para o problema de raça atingiram resultados mais desfavoráveis (em torno de 83%), o que demonstrou que se trata de um problema mais desafiador. Ao analisar todos os resultados, verificou-se o potencial que tais abordagens possuem para atingir resultados ainda melhores em trabalhos futuros.The livestock activities increasingly rely on information technologies that can contribute in several steps of the productive chain of the sector. In particular, many problems of Computer Vision focused on the livestock sector have been addressed through deep learning techniques and the results achieved have been satisfactory, demonstrating the potential that such techniques have to benefit these activities. Furthermore, approaches like this can be very advantageous, since they are non-invasive applications that can generate results in real time. Thus, this work proposes the development of three types of image classification models generated from Convolutional Neural Networks (CNNs): category, pose, and breed. A series of experiments were performed, of which the best results are reported in this paper. From a sequence of experiments and evaluations, it was possible to achieve satisfactory results for the cases addressed. More specifically, the pose and category classifier models achieved accuracies greater than 90%, while the models generated for the breed problem achieved worse results (around 83%), which demonstrated that it is a more challenging problem. Analyzing all the results, we verified the potential that such approaches have to achieve even better results in future works.porUniversidade Federal de Juiz de Fora (UFJF)UFJFBrasilFaculdade de Engenhariahttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenhariaVisão computacionalRedes neurais convolucionaisAprendizado profundoPecuária de precisãoPrecision livestockDeep LearningConvolutional Neural NetworksComputer visionClassificação de imagens de bovinos utilizando redes neurais convolucionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALbrianluiscoimbramaia.pdfbrianluiscoimbramaia.pdfPDF/Aapplication/pdf6424348https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/1/brianluiscoimbramaia.pdf513ea89667c300a551859096e7fb5150MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTbrianluiscoimbramaia.pdf.txtbrianluiscoimbramaia.pdf.txtExtracted texttext/plain106475https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/4/brianluiscoimbramaia.pdf.txtdf2eb2f2a4ba29926aa687a265d491d6MD54THUMBNAILbrianluiscoimbramaia.pdf.jpgbrianluiscoimbramaia.pdf.jpgGenerated Thumbnailimage/jpeg1159https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/5/brianluiscoimbramaia.pdf.jpgd571a41aaad709323a70deb742a73475MD55ufjf/165872024-02-02 04:04:03.439oai:hermes.cpd.ufjf.br:ufjf/16587Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2024-02-02T06:04:03Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Classificação de imagens de bovinos utilizando redes neurais convolucionais |
title |
Classificação de imagens de bovinos utilizando redes neurais convolucionais |
spellingShingle |
Classificação de imagens de bovinos utilizando redes neurais convolucionais Maia, Brian Luís Coimbra Engenharia Visão computacional Redes neurais convolucionais Aprendizado profundo Pecuária de precisão Precision livestock Deep Learning Convolutional Neural Networks Computer vision |
title_short |
Classificação de imagens de bovinos utilizando redes neurais convolucionais |
title_full |
Classificação de imagens de bovinos utilizando redes neurais convolucionais |
title_fullStr |
Classificação de imagens de bovinos utilizando redes neurais convolucionais |
title_full_unstemmed |
Classificação de imagens de bovinos utilizando redes neurais convolucionais |
title_sort |
Classificação de imagens de bovinos utilizando redes neurais convolucionais |
author |
Maia, Brian Luís Coimbra |
author_facet |
Maia, Brian Luís Coimbra |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Maciel, Luiz Maurílio da Silva |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4491455337486151 |
dc.contributor.referee1.fl_str_mv |
Carvalho, Bruno Campos |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1135384515652643 |
dc.contributor.referee2.fl_str_mv |
Vieira, Marcelo Bernardes |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/0858482819476716 |
dc.contributor.referee3.fl_str_mv |
Villela, Saulo Moraes |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/3358075178615535 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/ |
dc.contributor.author.fl_str_mv |
Maia, Brian Luís Coimbra |
contributor_str_mv |
Maciel, Luiz Maurílio da Silva Carvalho, Bruno Campos Vieira, Marcelo Bernardes Villela, Saulo Moraes |
dc.subject.cnpq.fl_str_mv |
Engenharia |
topic |
Engenharia Visão computacional Redes neurais convolucionais Aprendizado profundo Pecuária de precisão Precision livestock Deep Learning Convolutional Neural Networks Computer vision |
dc.subject.por.fl_str_mv |
Visão computacional Redes neurais convolucionais Aprendizado profundo Pecuária de precisão Precision livestock Deep Learning Convolutional Neural Networks Computer vision |
description |
As atividades pecuárias contam cada vez mais com tecnologias da informação que podem contribuir em diversas etapas da cadeia produtiva do setor. Em particular, muitos problemas de Visão Computacional voltados para o setor pecuário vêm sendo abordados através de técnicas de aprendizado profundo e os resultados atingidos têm sido satisfatórios, demonstrando o potencial que tais técnicas possuem para beneficiar essas atividades. Além disso, abordagens desse tipo podem ser muito vantajosas, já que se tratam de aplicações não invasivas e que podem gerar resultados em tempo real. Dessa forma, este trabalho propõe o desenvolvimento de três modelos de Redes Neurais Convolucionais (Convolutional Neural Networks - CNNs) para classificação de imagens de faces de bovinos de acordo com: categoria, pose e raça. Foi realizada uma série de experimentos, dos quais os melhores resultados são reportados neste trabalho. A partir de uma série de experimentos e avaliações, foi possível atingir resultados satisfatórios para os casos abordados. Mais especificamente, os modelos classificadores de pose e categoria atingiram acurácias superiores a 90%, enquanto os modelos gerados para o problema de raça atingiram resultados mais desfavoráveis (em torno de 83%), o que demonstrou que se trata de um problema mais desafiador. Ao analisar todos os resultados, verificou-se o potencial que tais abordagens possuem para atingir resultados ainda melhores em trabalhos futuros. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-01-12 |
dc.date.accessioned.fl_str_mv |
2024-02-01T16:10:15Z |
dc.date.available.fl_str_mv |
2024-01-30 2024-02-01T16:10:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/16587 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/16587 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Faculdade de Engenharia |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/1/brianluiscoimbramaia.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/2/license_rdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/3/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/4/brianluiscoimbramaia.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/16587/5/brianluiscoimbramaia.pdf.jpg |
bitstream.checksum.fl_str_mv |
513ea89667c300a551859096e7fb5150 e39d27027a6cc9cb039ad269a5db8e34 8a4605be74aa9ea9d79846c1fba20a33 df2eb2f2a4ba29926aa687a265d491d6 d571a41aaad709323a70deb742a73475 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193859591569408 |