Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais

Detalhes bibliográficos
Autor(a) principal: Marques Junior, Luiz Carlos
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/182521
Resumo: As espécies exóticas invasoras, também conhecidas como plantas daninhas, competem por recursos, como sol, água e nutrientes paralelamente a cultura plantada, impondo prejuízos econômicos ao agricultor. Para minimizar este problema, atualmente os agricultores fazem uso de herbicidas para a eliminação e/ou controle das plantas daninhas. O uso de herbicidas depara-se com problemas: i) algumas plantas daninhas são resistentes a aplicação de herbicidas e, ii) quando aplicados em demasia pode-se ter a contaminação da cultura plantada, do lençol freático e dos mananciais como rios e lagos. Nesse contexto, visando o desenvolvimento de ferramentas que permitam a minimização do emprego de herbicidas, novas abordagens que fazem uso de visão computacional e inteligência artificial aparecem como soluções promissoras, agregando novas ferramentas a agricultura de precisão. Dentre essas soluções destaca-se o aprendizado profundo (do inglês Deep Learning), que utiliza as redes neurais convolucionais para extrair características relevantes, principalmente em imagens, dessa maneira, permite por exemplo a identificação e a classificação de plantas daninhas, o que possibilita ao agricultor optar tanto pela eliminação mecânica da planta daninha quanto a aplicação localizada de herbicidas e em quantidades adequadas. A partir deste desafio que é a correta classificação de diferentes espécies de plantas daninhas, especialmente plantas resistentes aos herbicidas comerciais, o objetivo deste trabalho foi aplicar e comparar a performance de quatro arquiteturas de redes neurais convolucionais para a classificação de plantas daninhas de cinco espécies contidas em um banco de imagens desenvolvido para este trabalho. Para isso foi realizado o treinamento e a classificação das espécies nas seguintes arquiteturas de redes neurais convolucionais: VGG16, ResNet50, InceptionV3 e InceptionResNetV2 com 20 épocas de treinamento. Os resultados indicam que a arquitetura InceptionV3 apresenta o melhor desempenho, com 84,73% de exatidão na classificação nas cinco espécies, seguida pela arquitetura InceptionResNetV2 com 82,87%, VGG16 com 80,60%. A arquitetura ResNet50 obteve o pior resultado com 20,00% de exatidão, a rede InceptionV3 foi treinada novamente com 40 épocas, obtendo 88,50%de exatidão.
id UNSP_f02ffa10505ba7eed996271dc51aa053
oai_identifier_str oai:repositorio.unesp.br:11449/182521
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionaisClassification of weeds in an image bank using convolutional neural networksAgricultura de precisãoRedes neurais convolucionaisAprendizado profundoPlantas daninhasPrecision agricultureConvolutional neural networksDeep learningWeedsAs espécies exóticas invasoras, também conhecidas como plantas daninhas, competem por recursos, como sol, água e nutrientes paralelamente a cultura plantada, impondo prejuízos econômicos ao agricultor. Para minimizar este problema, atualmente os agricultores fazem uso de herbicidas para a eliminação e/ou controle das plantas daninhas. O uso de herbicidas depara-se com problemas: i) algumas plantas daninhas são resistentes a aplicação de herbicidas e, ii) quando aplicados em demasia pode-se ter a contaminação da cultura plantada, do lençol freático e dos mananciais como rios e lagos. Nesse contexto, visando o desenvolvimento de ferramentas que permitam a minimização do emprego de herbicidas, novas abordagens que fazem uso de visão computacional e inteligência artificial aparecem como soluções promissoras, agregando novas ferramentas a agricultura de precisão. Dentre essas soluções destaca-se o aprendizado profundo (do inglês Deep Learning), que utiliza as redes neurais convolucionais para extrair características relevantes, principalmente em imagens, dessa maneira, permite por exemplo a identificação e a classificação de plantas daninhas, o que possibilita ao agricultor optar tanto pela eliminação mecânica da planta daninha quanto a aplicação localizada de herbicidas e em quantidades adequadas. A partir deste desafio que é a correta classificação de diferentes espécies de plantas daninhas, especialmente plantas resistentes aos herbicidas comerciais, o objetivo deste trabalho foi aplicar e comparar a performance de quatro arquiteturas de redes neurais convolucionais para a classificação de plantas daninhas de cinco espécies contidas em um banco de imagens desenvolvido para este trabalho. Para isso foi realizado o treinamento e a classificação das espécies nas seguintes arquiteturas de redes neurais convolucionais: VGG16, ResNet50, InceptionV3 e InceptionResNetV2 com 20 épocas de treinamento. Os resultados indicam que a arquitetura InceptionV3 apresenta o melhor desempenho, com 84,73% de exatidão na classificação nas cinco espécies, seguida pela arquitetura InceptionResNetV2 com 82,87%, VGG16 com 80,60%. A arquitetura ResNet50 obteve o pior resultado com 20,00% de exatidão, a rede InceptionV3 foi treinada novamente com 40 épocas, obtendo 88,50%de exatidão.Exotic invasive species, also known as weeds, compete for resources such as sun, water and nutrients in parallel with the planted crop, imposing economic losses to the farmer. To minimize this problem, farmers are currently using herbicides for the elimination and / or control of weeds.The use of herbicides has problems: i) some weeds are resistant to the application of herbicides and ii) when applied too much can contaminate the planted crop, groundwater and springs such as rivers and lakes. In this context, aiming at developing tools to minimize the use of herbicides, new approaches that make use of computer vision and artificial intelligence appear as promising solutions, adding new tools to precision agriculture. Among these solutions are the Deep Learning, which uses the convolutional neural networks to extract relevant features, mainly in images, thus, allows for example the identification and classification of weeds, which enables the farmer to opt for the mechanical elimination of the weeds as well as the localized application of herbicides and in adequate quantities. From this challenge, which is the correct classification of different weed species, especially plants resistant to commercial herbicides, the objective of this study was to apply and compare the performance of four architectures of convolutional neural networks for classification of weed five species contained in an image bank developed for this work. The training and classification of the species were carried out in the following convolutional neural network architectures: VGG16, ResNet50, InceptionV3 and InceptionResNetV2 with 20 training epochs. The results indicated that the InceptionV3 architecture presented the best performance, with 84.73% accuracy in the classification of the five species, followed by the InceptionResNetV2 architecture with 82.87%, VGG16 with 80.60%. The ResNet50 architecture obtained the worst result with 20.00% accuracy, the InceptionV3 network was trained again with 40 epochs, obtaining 88.50% accuracy.Universidade Estadual Paulista (Unesp)Ulson, José Alfredo Covolan [UNESP]Universidade Estadual Paulista (Unesp)Marques Junior, Luiz Carlos2019-07-12T12:50:21Z2019-07-12T12:50:21Z2019-05-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/18252100091843133004056087P2porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-28T19:13:11Zoai:repositorio.unesp.br:11449/182521Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:40:27.144239Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais
Classification of weeds in an image bank using convolutional neural networks
title Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais
spellingShingle Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais
Marques Junior, Luiz Carlos
Agricultura de precisão
Redes neurais convolucionais
Aprendizado profundo
Plantas daninhas
Precision agriculture
Convolutional neural networks
Deep learning
Weeds
title_short Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais
title_full Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais
title_fullStr Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais
title_full_unstemmed Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais
title_sort Classificação de plantas daninhas em banco de imagens utilizando redes neurais convolucionais
author Marques Junior, Luiz Carlos
author_facet Marques Junior, Luiz Carlos
author_role author
dc.contributor.none.fl_str_mv Ulson, José Alfredo Covolan [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Marques Junior, Luiz Carlos
dc.subject.por.fl_str_mv Agricultura de precisão
Redes neurais convolucionais
Aprendizado profundo
Plantas daninhas
Precision agriculture
Convolutional neural networks
Deep learning
Weeds
topic Agricultura de precisão
Redes neurais convolucionais
Aprendizado profundo
Plantas daninhas
Precision agriculture
Convolutional neural networks
Deep learning
Weeds
description As espécies exóticas invasoras, também conhecidas como plantas daninhas, competem por recursos, como sol, água e nutrientes paralelamente a cultura plantada, impondo prejuízos econômicos ao agricultor. Para minimizar este problema, atualmente os agricultores fazem uso de herbicidas para a eliminação e/ou controle das plantas daninhas. O uso de herbicidas depara-se com problemas: i) algumas plantas daninhas são resistentes a aplicação de herbicidas e, ii) quando aplicados em demasia pode-se ter a contaminação da cultura plantada, do lençol freático e dos mananciais como rios e lagos. Nesse contexto, visando o desenvolvimento de ferramentas que permitam a minimização do emprego de herbicidas, novas abordagens que fazem uso de visão computacional e inteligência artificial aparecem como soluções promissoras, agregando novas ferramentas a agricultura de precisão. Dentre essas soluções destaca-se o aprendizado profundo (do inglês Deep Learning), que utiliza as redes neurais convolucionais para extrair características relevantes, principalmente em imagens, dessa maneira, permite por exemplo a identificação e a classificação de plantas daninhas, o que possibilita ao agricultor optar tanto pela eliminação mecânica da planta daninha quanto a aplicação localizada de herbicidas e em quantidades adequadas. A partir deste desafio que é a correta classificação de diferentes espécies de plantas daninhas, especialmente plantas resistentes aos herbicidas comerciais, o objetivo deste trabalho foi aplicar e comparar a performance de quatro arquiteturas de redes neurais convolucionais para a classificação de plantas daninhas de cinco espécies contidas em um banco de imagens desenvolvido para este trabalho. Para isso foi realizado o treinamento e a classificação das espécies nas seguintes arquiteturas de redes neurais convolucionais: VGG16, ResNet50, InceptionV3 e InceptionResNetV2 com 20 épocas de treinamento. Os resultados indicam que a arquitetura InceptionV3 apresenta o melhor desempenho, com 84,73% de exatidão na classificação nas cinco espécies, seguida pela arquitetura InceptionResNetV2 com 82,87%, VGG16 com 80,60%. A arquitetura ResNet50 obteve o pior resultado com 20,00% de exatidão, a rede InceptionV3 foi treinada novamente com 40 épocas, obtendo 88,50%de exatidão.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-12T12:50:21Z
2019-07-12T12:50:21Z
2019-05-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/182521
000918431
33004056087P2
url http://hdl.handle.net/11449/182521
identifier_str_mv 000918431
33004056087P2
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128398366605312