Divisores sobre curvas e o Teorema de Riemann-Roch
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/6612 |
Resumo: | O objetivo desse trabalho é o estudo de conceitos básicos da Geometria Algébrica sob o ponto de vista clássico. O foco central do trabalho é o estudo do Teorema de Riemann- Roch e algumas de suas aplicações. Esse teorema constitui uma importante ferramenta no estudo da Geometria Algébrica clássica uma vez que possibilita, por exemplo, o cáculo do gênero de uma curva projetiva não singular no espaço projetivo de dimensão dois. Para o desenvolvimento do estudo do Teorema de Riemann-Roch e suas aplicações serão estudados conceitos tais como: variedades, dimensão, diferenciais de Weil, divisores, divisores sobre curvas e o anel topológico Adèle. |
id |
UFJF_8aea325ef347bc901269fe0f1e5ff7ae |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/6612 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Ribeiro, Beatriz Casulari da Mottahttp://lattes.cnpq.brFeitosa, Frederico Serciohttp://lattes.cnpq.brChaves, Juliana Coelhohttp://lattes.cnpq.brRibeiro, Flaviana Andréahttp://lattes.cnpq.brhttp://lattes.cnpq.brPorto, Anderson Corrêa2018-04-09T19:23:34Z2018-03-282018-04-09T19:23:34Z2018-02-08https://repositorio.ufjf.br/jspui/handle/ufjf/6612O objetivo desse trabalho é o estudo de conceitos básicos da Geometria Algébrica sob o ponto de vista clássico. O foco central do trabalho é o estudo do Teorema de Riemann- Roch e algumas de suas aplicações. Esse teorema constitui uma importante ferramenta no estudo da Geometria Algébrica clássica uma vez que possibilita, por exemplo, o cáculo do gênero de uma curva projetiva não singular no espaço projetivo de dimensão dois. Para o desenvolvimento do estudo do Teorema de Riemann-Roch e suas aplicações serão estudados conceitos tais como: variedades, dimensão, diferenciais de Weil, divisores, divisores sobre curvas e o anel topológico Adèle.The goal of this work is the study of basic concepts of Algebraic Geometry from the classical point of view. The central focus of the paper is the study of Riemann-Roch Theorem and some of its applications. This theorem constitutes an important tool in the study of classical Algebraic Geometry since it allows, for example, the calculation of the genus of a non-singular projective curve in the projective space of dimension two. For the development of the study of the Riemann-Roch Theorem and its applications we will study concepts such as: varieties, dimension, Weil differentials, divisors, divisors on curves and the Adèle topological ring.porUniversidade Federal de Juiz de Fora (UFJF)Mestrado Acadêmico em MatemáticaUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAGeometria algébricaDivisoresRiemann-RochAlgebraic geometryDivisorsRiemann-Roch TheoremDivisores sobre curvas e o Teorema de Riemann-Rochinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTandersoncorreaporto.pdf.txtandersoncorreaporto.pdf.txtExtracted texttext/plain124947https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/3/andersoncorreaporto.pdf.txtc11ffd4c7f630216e4173988acc71492MD53THUMBNAILandersoncorreaporto.pdf.jpgandersoncorreaporto.pdf.jpgGenerated Thumbnailimage/jpeg1099https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/4/andersoncorreaporto.pdf.jpg987bcb3fdfed8b043ecaa814dfa22a27MD54ORIGINALandersoncorreaporto.pdfandersoncorreaporto.pdfapplication/pdf567494https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/1/andersoncorreaporto.pdfe685a947374868ceaa838290c83bc61aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52ufjf/66122019-06-16 07:57:09.009oai:hermes.cpd.ufjf.br:ufjf/6612TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-06-16T10:57:09Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Divisores sobre curvas e o Teorema de Riemann-Roch |
title |
Divisores sobre curvas e o Teorema de Riemann-Roch |
spellingShingle |
Divisores sobre curvas e o Teorema de Riemann-Roch Porto, Anderson Corrêa CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Geometria algébrica Divisores Riemann-Roch Algebraic geometry Divisors Riemann-Roch Theorem |
title_short |
Divisores sobre curvas e o Teorema de Riemann-Roch |
title_full |
Divisores sobre curvas e o Teorema de Riemann-Roch |
title_fullStr |
Divisores sobre curvas e o Teorema de Riemann-Roch |
title_full_unstemmed |
Divisores sobre curvas e o Teorema de Riemann-Roch |
title_sort |
Divisores sobre curvas e o Teorema de Riemann-Roch |
author |
Porto, Anderson Corrêa |
author_facet |
Porto, Anderson Corrêa |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Ribeiro, Beatriz Casulari da Motta |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br |
dc.contributor.advisor-co1.fl_str_mv |
Feitosa, Frederico Sercio |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br |
dc.contributor.referee1.fl_str_mv |
Chaves, Juliana Coelho |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br |
dc.contributor.referee2.fl_str_mv |
Ribeiro, Flaviana Andréa |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br |
dc.contributor.author.fl_str_mv |
Porto, Anderson Corrêa |
contributor_str_mv |
Ribeiro, Beatriz Casulari da Motta Feitosa, Frederico Sercio Chaves, Juliana Coelho Ribeiro, Flaviana Andréa |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Geometria algébrica Divisores Riemann-Roch Algebraic geometry Divisors Riemann-Roch Theorem |
dc.subject.por.fl_str_mv |
Geometria algébrica Divisores Riemann-Roch Algebraic geometry Divisors Riemann-Roch Theorem |
description |
O objetivo desse trabalho é o estudo de conceitos básicos da Geometria Algébrica sob o ponto de vista clássico. O foco central do trabalho é o estudo do Teorema de Riemann- Roch e algumas de suas aplicações. Esse teorema constitui uma importante ferramenta no estudo da Geometria Algébrica clássica uma vez que possibilita, por exemplo, o cáculo do gênero de uma curva projetiva não singular no espaço projetivo de dimensão dois. Para o desenvolvimento do estudo do Teorema de Riemann-Roch e suas aplicações serão estudados conceitos tais como: variedades, dimensão, diferenciais de Weil, divisores, divisores sobre curvas e o anel topológico Adèle. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-04-09T19:23:34Z |
dc.date.available.fl_str_mv |
2018-03-28 2018-04-09T19:23:34Z |
dc.date.issued.fl_str_mv |
2018-02-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/6612 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/6612 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Mestrado Acadêmico em Matemática |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/3/andersoncorreaporto.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/4/andersoncorreaporto.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/1/andersoncorreaporto.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/2/license.txt |
bitstream.checksum.fl_str_mv |
c11ffd4c7f630216e4173988acc71492 987bcb3fdfed8b043ecaa814dfa22a27 e685a947374868ceaa838290c83bc61a 000e18a5aee6ca21bb5811ddf55fc37b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193923187703808 |