Divisores sobre curvas e o Teorema de Riemann-Roch

Detalhes bibliográficos
Autor(a) principal: Porto, Anderson Corrêa
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/6612
Resumo: O objetivo desse trabalho é o estudo de conceitos básicos da Geometria Algébrica sob o ponto de vista clássico. O foco central do trabalho é o estudo do Teorema de Riemann- Roch e algumas de suas aplicações. Esse teorema constitui uma importante ferramenta no estudo da Geometria Algébrica clássica uma vez que possibilita, por exemplo, o cáculo do gênero de uma curva projetiva não singular no espaço projetivo de dimensão dois. Para o desenvolvimento do estudo do Teorema de Riemann-Roch e suas aplicações serão estudados conceitos tais como: variedades, dimensão, diferenciais de Weil, divisores, divisores sobre curvas e o anel topológico Adèle.
id UFJF_8aea325ef347bc901269fe0f1e5ff7ae
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/6612
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Ribeiro, Beatriz Casulari da Mottahttp://lattes.cnpq.brFeitosa, Frederico Serciohttp://lattes.cnpq.brChaves, Juliana Coelhohttp://lattes.cnpq.brRibeiro, Flaviana Andréahttp://lattes.cnpq.brhttp://lattes.cnpq.brPorto, Anderson Corrêa2018-04-09T19:23:34Z2018-03-282018-04-09T19:23:34Z2018-02-08https://repositorio.ufjf.br/jspui/handle/ufjf/6612O objetivo desse trabalho é o estudo de conceitos básicos da Geometria Algébrica sob o ponto de vista clássico. O foco central do trabalho é o estudo do Teorema de Riemann- Roch e algumas de suas aplicações. Esse teorema constitui uma importante ferramenta no estudo da Geometria Algébrica clássica uma vez que possibilita, por exemplo, o cáculo do gênero de uma curva projetiva não singular no espaço projetivo de dimensão dois. Para o desenvolvimento do estudo do Teorema de Riemann-Roch e suas aplicações serão estudados conceitos tais como: variedades, dimensão, diferenciais de Weil, divisores, divisores sobre curvas e o anel topológico Adèle.The goal of this work is the study of basic concepts of Algebraic Geometry from the classical point of view. The central focus of the paper is the study of Riemann-Roch Theorem and some of its applications. This theorem constitutes an important tool in the study of classical Algebraic Geometry since it allows, for example, the calculation of the genus of a non-singular projective curve in the projective space of dimension two. For the development of the study of the Riemann-Roch Theorem and its applications we will study concepts such as: varieties, dimension, Weil differentials, divisors, divisors on curves and the Adèle topological ring.porUniversidade Federal de Juiz de Fora (UFJF)Mestrado Acadêmico em MatemáticaUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAGeometria algébricaDivisoresRiemann-RochAlgebraic geometryDivisorsRiemann-Roch TheoremDivisores sobre curvas e o Teorema de Riemann-Rochinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTandersoncorreaporto.pdf.txtandersoncorreaporto.pdf.txtExtracted texttext/plain124947https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/3/andersoncorreaporto.pdf.txtc11ffd4c7f630216e4173988acc71492MD53THUMBNAILandersoncorreaporto.pdf.jpgandersoncorreaporto.pdf.jpgGenerated Thumbnailimage/jpeg1099https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/4/andersoncorreaporto.pdf.jpg987bcb3fdfed8b043ecaa814dfa22a27MD54ORIGINALandersoncorreaporto.pdfandersoncorreaporto.pdfapplication/pdf567494https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/1/andersoncorreaporto.pdfe685a947374868ceaa838290c83bc61aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52ufjf/66122019-06-16 07:57:09.009oai:hermes.cpd.ufjf.br:ufjf/6612TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-06-16T10:57:09Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Divisores sobre curvas e o Teorema de Riemann-Roch
title Divisores sobre curvas e o Teorema de Riemann-Roch
spellingShingle Divisores sobre curvas e o Teorema de Riemann-Roch
Porto, Anderson Corrêa
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Geometria algébrica
Divisores
Riemann-Roch
Algebraic geometry
Divisors
Riemann-Roch Theorem
title_short Divisores sobre curvas e o Teorema de Riemann-Roch
title_full Divisores sobre curvas e o Teorema de Riemann-Roch
title_fullStr Divisores sobre curvas e o Teorema de Riemann-Roch
title_full_unstemmed Divisores sobre curvas e o Teorema de Riemann-Roch
title_sort Divisores sobre curvas e o Teorema de Riemann-Roch
author Porto, Anderson Corrêa
author_facet Porto, Anderson Corrêa
author_role author
dc.contributor.advisor1.fl_str_mv Ribeiro, Beatriz Casulari da Motta
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br
dc.contributor.advisor-co1.fl_str_mv Feitosa, Frederico Sercio
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br
dc.contributor.referee1.fl_str_mv Chaves, Juliana Coelho
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br
dc.contributor.referee2.fl_str_mv Ribeiro, Flaviana Andréa
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br
dc.contributor.author.fl_str_mv Porto, Anderson Corrêa
contributor_str_mv Ribeiro, Beatriz Casulari da Motta
Feitosa, Frederico Sercio
Chaves, Juliana Coelho
Ribeiro, Flaviana Andréa
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
topic CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Geometria algébrica
Divisores
Riemann-Roch
Algebraic geometry
Divisors
Riemann-Roch Theorem
dc.subject.por.fl_str_mv Geometria algébrica
Divisores
Riemann-Roch
Algebraic geometry
Divisors
Riemann-Roch Theorem
description O objetivo desse trabalho é o estudo de conceitos básicos da Geometria Algébrica sob o ponto de vista clássico. O foco central do trabalho é o estudo do Teorema de Riemann- Roch e algumas de suas aplicações. Esse teorema constitui uma importante ferramenta no estudo da Geometria Algébrica clássica uma vez que possibilita, por exemplo, o cáculo do gênero de uma curva projetiva não singular no espaço projetivo de dimensão dois. Para o desenvolvimento do estudo do Teorema de Riemann-Roch e suas aplicações serão estudados conceitos tais como: variedades, dimensão, diferenciais de Weil, divisores, divisores sobre curvas e o anel topológico Adèle.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-04-09T19:23:34Z
dc.date.available.fl_str_mv 2018-03-28
2018-04-09T19:23:34Z
dc.date.issued.fl_str_mv 2018-02-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/6612
url https://repositorio.ufjf.br/jspui/handle/ufjf/6612
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Mestrado Acadêmico em Matemática
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/3/andersoncorreaporto.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/4/andersoncorreaporto.pdf.jpg
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/1/andersoncorreaporto.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6612/2/license.txt
bitstream.checksum.fl_str_mv c11ffd4c7f630216e4173988acc71492
987bcb3fdfed8b043ecaa814dfa22a27
e685a947374868ceaa838290c83bc61a
000e18a5aee6ca21bb5811ddf55fc37b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193923187703808