On (non)lineability and (non)spaceability in L1 spaces

Detalhes bibliográficos
Autor(a) principal: Emerick, Pedro de Oliveira
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/17290
Resumo: Na presente dissertação, apresentaremos métodos para a construção de conjuntos que são lineáveis ou até mesmo espaçáveis em determinados espaços de Banach. Nossa abordagem também nos permitirá exibir exemplos de conjuntos que são lineáveis, mas não espaçáveis, e conjuntos que nem sequer são lineáveis. Seja v = (vn) um elemento de ℓ1 com apenas um número finito de entradas nulas. Neste cenário discutiremos a lineabilidade (espaçabilidade) dos seguintes conjuntos: B(v) (respectivamente A0(v)) o conjunto de todos os elementos de ℓ1 onde o teste da comparação por limite com relação a v é conclusivo (respectivamente inconclusivo); X(v) o conjunto de todos os elementos de ℓ1 onde o teste da comparação padrão falha (com relação a v). Neste contexto provaremos que o conjunto A0(v) é c-denso-lineável mas não é espaçável. Por outro lado, o conjunto B(v) ∪ {0} contém apenas subespaços de dimensão 1. Além disso, nossos métodos nos permitirão concluir: (1) todo subespaço fechado de dimensão infinita de ℓ1 contém um elemento de X(v); (2) X(v) é c-denso-lineável e c-espaçável. Utilizando os resultados supracitados, provaremos que o conjunto formado pelos elementos de ℓ1 cujo teste da raiz (respectivamente razão) é inconclusivo é de fato espaçável. Também provaremos alguns resultados clássicos. Por exemplo, concluiremos que todo subespaço fechado de dimensão infinita de ℓ1 contém um elemento com infinitas entradas nulas. Ao final estenderemos alguns desses resultados para o caso L1(M), onde M é um conjunto ilimitado de um espaço vetorial normado fixo Y, e M está munido com a σ-álgebra de Borel.
id UFJF_a6e0f5e2a437aa30eb36c043fd5fbf67
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/17290
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling França, Willian Versolatihttp://lattes.cnpq.br/5600531171701209Botelho, Geraldo Márcio de Azevedohttp://lattes.cnpq.br/6734011684397258Louza Júnior, Nelson Dantashttp://lattes.cnpq.br/3625666209496125http://lattes.cnpq.br/6792440213843722Emerick, Pedro de Oliveira2024-08-29T15:26:48Z2024-08-292024-08-29T15:26:48Z2024-07-24https://repositorio.ufjf.br/jspui/handle/ufjf/17290Na presente dissertação, apresentaremos métodos para a construção de conjuntos que são lineáveis ou até mesmo espaçáveis em determinados espaços de Banach. Nossa abordagem também nos permitirá exibir exemplos de conjuntos que são lineáveis, mas não espaçáveis, e conjuntos que nem sequer são lineáveis. Seja v = (vn) um elemento de ℓ1 com apenas um número finito de entradas nulas. Neste cenário discutiremos a lineabilidade (espaçabilidade) dos seguintes conjuntos: B(v) (respectivamente A0(v)) o conjunto de todos os elementos de ℓ1 onde o teste da comparação por limite com relação a v é conclusivo (respectivamente inconclusivo); X(v) o conjunto de todos os elementos de ℓ1 onde o teste da comparação padrão falha (com relação a v). Neste contexto provaremos que o conjunto A0(v) é c-denso-lineável mas não é espaçável. Por outro lado, o conjunto B(v) ∪ {0} contém apenas subespaços de dimensão 1. Além disso, nossos métodos nos permitirão concluir: (1) todo subespaço fechado de dimensão infinita de ℓ1 contém um elemento de X(v); (2) X(v) é c-denso-lineável e c-espaçável. Utilizando os resultados supracitados, provaremos que o conjunto formado pelos elementos de ℓ1 cujo teste da raiz (respectivamente razão) é inconclusivo é de fato espaçável. Também provaremos alguns resultados clássicos. Por exemplo, concluiremos que todo subespaço fechado de dimensão infinita de ℓ1 contém um elemento com infinitas entradas nulas. Ao final estenderemos alguns desses resultados para o caso L1(M), onde M é um conjunto ilimitado de um espaço vetorial normado fixo Y, e M está munido com a σ-álgebra de Borel.In the present dissertation, we will provide methods for constructing lineable or even spaceable sets in certain Banach spaces. Our approach will also allow us to exhibit examples of sets that are lineable but not spaceable, and sets that are not even lineable. Let v = (vn) be an element of ℓ1 with finitely many zero entries. In this setting, we will discuss the lineability (spaceability) of the following sets: B(v) (resp. A0(v)) the set of all elements of ℓ1 where the limit comparison test with respect to v works (resp. fails); X(v) the set of all elements of ℓ1 where the standard comparison test fails (with respect to v). On this matter, we will prove that the set A0(v) is c-dense-lineable but not spaceable. Meanwhile, the set B(v) ∪ {0} only contains finite-dimensional subspaces of dimension 1. Moreover, our methods will allow us to conclude: (1) every infinite-dimensional closed subspace of ℓ1 contains an element of X(v); (2) X(v) is c-dense-lineable and c-spaceable. As an application of our above mentioned findings, we will be able to conclude that the set formed by all elements of ℓ1 for whose generated series the root (resp. ratio) test fails is spaceable. In addition, we will also retrieve some known results. For instance, we will prove that every infinite-dimensional closed subspace of ℓ1 contains an element with infinitely many zeros. At the end, we will extend some of these results to the case L1(M), where M is an unbounded subset of a fixed normed vector space Y, and M is equipped with the Borel σ-algebra.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Juiz de Fora (UFJF)Mestrado Acadêmico em MatemáticaUFJFBrasilICE – Instituto de Ciências ExatasAttribution-NonCommercial-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-sa/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICALineabilidadeEspaçabilidadeEspaços de sequênciasEspaços LpLineabilitySpaceabilitySequence spacesLp spacesOn (non)lineability and (non)spaceability in L1 spacesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALpedrodeoliveiraemerick.pdfpedrodeoliveiraemerick.pdfapplication/pdf765045https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/1/pedrodeoliveiraemerick.pdffe378734f6c660237fb3dd3fce6f9b4dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/2/license_rdf996f8b5afe3136b76594f43bfda24c5eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTpedrodeoliveiraemerick.pdf.txtpedrodeoliveiraemerick.pdf.txtExtracted texttext/plain73417https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/4/pedrodeoliveiraemerick.pdf.txtc270633d8fb2000e2288bb8318ac4000MD54THUMBNAILpedrodeoliveiraemerick.pdf.jpgpedrodeoliveiraemerick.pdf.jpgGenerated Thumbnailimage/jpeg1149https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/5/pedrodeoliveiraemerick.pdf.jpg64d2cfe659ba1a5fe70966343c106415MD55ufjf/172902024-08-30 03:04:45.006oai:hermes.cpd.ufjf.br:ufjf/17290Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2024-08-30T06:04:45Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv On (non)lineability and (non)spaceability in L1 spaces
title On (non)lineability and (non)spaceability in L1 spaces
spellingShingle On (non)lineability and (non)spaceability in L1 spaces
Emerick, Pedro de Oliveira
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Lineabilidade
Espaçabilidade
Espaços de sequências
Espaços Lp
Lineability
Spaceability
Sequence spaces
Lp spaces
title_short On (non)lineability and (non)spaceability in L1 spaces
title_full On (non)lineability and (non)spaceability in L1 spaces
title_fullStr On (non)lineability and (non)spaceability in L1 spaces
title_full_unstemmed On (non)lineability and (non)spaceability in L1 spaces
title_sort On (non)lineability and (non)spaceability in L1 spaces
author Emerick, Pedro de Oliveira
author_facet Emerick, Pedro de Oliveira
author_role author
dc.contributor.advisor1.fl_str_mv França, Willian Versolati
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5600531171701209
dc.contributor.referee1.fl_str_mv Botelho, Geraldo Márcio de Azevedo
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6734011684397258
dc.contributor.referee2.fl_str_mv Louza Júnior, Nelson Dantas
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3625666209496125
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6792440213843722
dc.contributor.author.fl_str_mv Emerick, Pedro de Oliveira
contributor_str_mv França, Willian Versolati
Botelho, Geraldo Márcio de Azevedo
Louza Júnior, Nelson Dantas
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
topic CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Lineabilidade
Espaçabilidade
Espaços de sequências
Espaços Lp
Lineability
Spaceability
Sequence spaces
Lp spaces
dc.subject.por.fl_str_mv Lineabilidade
Espaçabilidade
Espaços de sequências
Espaços Lp
Lineability
Spaceability
Sequence spaces
Lp spaces
description Na presente dissertação, apresentaremos métodos para a construção de conjuntos que são lineáveis ou até mesmo espaçáveis em determinados espaços de Banach. Nossa abordagem também nos permitirá exibir exemplos de conjuntos que são lineáveis, mas não espaçáveis, e conjuntos que nem sequer são lineáveis. Seja v = (vn) um elemento de ℓ1 com apenas um número finito de entradas nulas. Neste cenário discutiremos a lineabilidade (espaçabilidade) dos seguintes conjuntos: B(v) (respectivamente A0(v)) o conjunto de todos os elementos de ℓ1 onde o teste da comparação por limite com relação a v é conclusivo (respectivamente inconclusivo); X(v) o conjunto de todos os elementos de ℓ1 onde o teste da comparação padrão falha (com relação a v). Neste contexto provaremos que o conjunto A0(v) é c-denso-lineável mas não é espaçável. Por outro lado, o conjunto B(v) ∪ {0} contém apenas subespaços de dimensão 1. Além disso, nossos métodos nos permitirão concluir: (1) todo subespaço fechado de dimensão infinita de ℓ1 contém um elemento de X(v); (2) X(v) é c-denso-lineável e c-espaçável. Utilizando os resultados supracitados, provaremos que o conjunto formado pelos elementos de ℓ1 cujo teste da raiz (respectivamente razão) é inconclusivo é de fato espaçável. Também provaremos alguns resultados clássicos. Por exemplo, concluiremos que todo subespaço fechado de dimensão infinita de ℓ1 contém um elemento com infinitas entradas nulas. Ao final estenderemos alguns desses resultados para o caso L1(M), onde M é um conjunto ilimitado de um espaço vetorial normado fixo Y, e M está munido com a σ-álgebra de Borel.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-08-29T15:26:48Z
dc.date.available.fl_str_mv 2024-08-29
2024-08-29T15:26:48Z
dc.date.issued.fl_str_mv 2024-07-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/17290
url https://repositorio.ufjf.br/jspui/handle/ufjf/17290
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-nc-sa/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-nc-sa/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Mestrado Acadêmico em Matemática
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/1/pedrodeoliveiraemerick.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/2/license_rdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/3/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/4/pedrodeoliveiraemerick.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/17290/5/pedrodeoliveiraemerick.pdf.jpg
bitstream.checksum.fl_str_mv fe378734f6c660237fb3dd3fce6f9b4d
996f8b5afe3136b76594f43bfda24c5e
8a4605be74aa9ea9d79846c1fba20a33
c270633d8fb2000e2288bb8318ac4000
64d2cfe659ba1a5fe70966343c106415
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193891374956544