Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/3563 |
Resumo: | O armazenamento de energia elétrica em larga escala ainda não é viável devido a restrições técnicas e econômicas. Portanto, toda energia consumida deve ser produzida instantaneamente; não é possível armazenar o excesso de produção, ou tampouco cobrir eventuais faltas de oferta com estoques de segurança, mesmo que por um curto período de tempo. Consequentemente, um dos principais desafios do planejamento energético consiste em realizar previsões acuradas para as demandas futuras. Neste trabalho, apresentamos um modelo de previsão para o consumo de energia elétrica a curto prazo. A metodologia utilizada compreende a construção de um comitê de previsão, por meio da aplicação do algoritmo Gradient Boosting em combinação com modelos de árvores de decisão e a técnica de amortecimento exponencial. Esta estratégia compreende um método de aprendizado supervisionado que ajusta o modelo de previsão com base em dados históricos do consumo de energia, das temperaturas registradas e de variáveis de calendário. Os modelos propostos foram testados em duas bases de dados distintas e demonstraram um ótimo desempenho quando comparados com resultados publicados em outros trabalhos recentes. |
id |
UFJF_e67f96adc259c884758b5bbad1c6d321 |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/3563 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Hippert, Henrique Steinherzhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782250Z1Pedreira, Carlos Eduardohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787270E1Oliveira, Fabrízzio Condé dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766245H8Borges, Carlos Cristiano Hasencleverhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728257U5http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4451047T1Mayrink, Victor Teixeira de Melo2017-03-07T15:06:57Z2017-03-072017-03-07T15:06:57Z2016-08-31https://repositorio.ufjf.br/jspui/handle/ufjf/3563O armazenamento de energia elétrica em larga escala ainda não é viável devido a restrições técnicas e econômicas. Portanto, toda energia consumida deve ser produzida instantaneamente; não é possível armazenar o excesso de produção, ou tampouco cobrir eventuais faltas de oferta com estoques de segurança, mesmo que por um curto período de tempo. Consequentemente, um dos principais desafios do planejamento energético consiste em realizar previsões acuradas para as demandas futuras. Neste trabalho, apresentamos um modelo de previsão para o consumo de energia elétrica a curto prazo. A metodologia utilizada compreende a construção de um comitê de previsão, por meio da aplicação do algoritmo Gradient Boosting em combinação com modelos de árvores de decisão e a técnica de amortecimento exponencial. Esta estratégia compreende um método de aprendizado supervisionado que ajusta o modelo de previsão com base em dados históricos do consumo de energia, das temperaturas registradas e de variáveis de calendário. Os modelos propostos foram testados em duas bases de dados distintas e demonstraram um ótimo desempenho quando comparados com resultados publicados em outros trabalhos recentes.The storage of electrical energy is still not feasible on a large scale due to technical and economic issues. Therefore, all energy to be consumed must be produced instantly; it is not possible to store the production leftover, or either to cover any supply shortages with safety stocks, even for a short period of time. Thus, one of the main challenges of energy planning consists in computing accurate forecasts for the future demand. In this paper, we present a model for short-term load forecasting. The methodology consists in composing a prediction comitee by applying the Gradient Boosting algorithm in combination with decision tree models and the exponential smoothing technique. This strategy comprises a supervised learning method that adjusts the forecasting model based on historical energy consumption data, the recorded temperatures and calendar variables. The proposed models were tested in two di erent datasets and showed a good performance when compared with results published in recent papers.FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisporUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRAPrevisão de carga elétricaAmortecimento exponencialÁrvores de decisãoGradient BoostingShort Term Load ForecastingExponential SmoothingDecision TreesGradient BoostingAvaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTHUMBNAILvictorteixeirademelomayrink.pdf.jpgvictorteixeirademelomayrink.pdf.jpgGenerated Thumbnailimage/jpeg1172https://repositorio.ufjf.br/jspui/bitstream/ufjf/3563/4/victorteixeirademelomayrink.pdf.jpg292c3d4050c20fa962ac2390edcdd7bdMD54ORIGINALvictorteixeirademelomayrink.pdfvictorteixeirademelomayrink.pdfapplication/pdf2587774https://repositorio.ufjf.br/jspui/bitstream/ufjf/3563/1/victorteixeirademelomayrink.pdf1319cc37a15480796050b618b4d7e5f7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/3563/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52TEXTvictorteixeirademelomayrink.pdf.txtvictorteixeirademelomayrink.pdf.txtExtracted texttext/plain268664https://repositorio.ufjf.br/jspui/bitstream/ufjf/3563/3/victorteixeirademelomayrink.pdf.txt886e228c3dfc5b50ff2b011bb6dbf110MD53ufjf/35632019-11-07 11:09:48.195oai:hermes.cpd.ufjf.br:ufjf/3563TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-11-07T13:09:48Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo |
title |
Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo |
spellingShingle |
Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo Mayrink, Victor Teixeira de Melo CNPQ::CIENCIAS EXATAS E DA TERRA Previsão de carga elétrica Amortecimento exponencial Árvores de decisão Gradient Boosting Short Term Load Forecasting Exponential Smoothing Decision Trees Gradient Boosting |
title_short |
Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo |
title_full |
Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo |
title_fullStr |
Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo |
title_full_unstemmed |
Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo |
title_sort |
Avaliação do algoritmo Gradient Boosting em aplicações de previsão de carga elétrica a curto prazo |
author |
Mayrink, Victor Teixeira de Melo |
author_facet |
Mayrink, Victor Teixeira de Melo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Hippert, Henrique Steinherz |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782250Z1 |
dc.contributor.referee1.fl_str_mv |
Pedreira, Carlos Eduardo |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787270E1 |
dc.contributor.referee2.fl_str_mv |
Oliveira, Fabrízzio Condé de |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766245H8 |
dc.contributor.referee3.fl_str_mv |
Borges, Carlos Cristiano Hasenclever |
dc.contributor.referee3Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728257U5 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4451047T1 |
dc.contributor.author.fl_str_mv |
Mayrink, Victor Teixeira de Melo |
contributor_str_mv |
Hippert, Henrique Steinherz Pedreira, Carlos Eduardo Oliveira, Fabrízzio Condé de Borges, Carlos Cristiano Hasenclever |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA Previsão de carga elétrica Amortecimento exponencial Árvores de decisão Gradient Boosting Short Term Load Forecasting Exponential Smoothing Decision Trees Gradient Boosting |
dc.subject.por.fl_str_mv |
Previsão de carga elétrica Amortecimento exponencial Árvores de decisão Gradient Boosting Short Term Load Forecasting Exponential Smoothing Decision Trees Gradient Boosting |
description |
O armazenamento de energia elétrica em larga escala ainda não é viável devido a restrições técnicas e econômicas. Portanto, toda energia consumida deve ser produzida instantaneamente; não é possível armazenar o excesso de produção, ou tampouco cobrir eventuais faltas de oferta com estoques de segurança, mesmo que por um curto período de tempo. Consequentemente, um dos principais desafios do planejamento energético consiste em realizar previsões acuradas para as demandas futuras. Neste trabalho, apresentamos um modelo de previsão para o consumo de energia elétrica a curto prazo. A metodologia utilizada compreende a construção de um comitê de previsão, por meio da aplicação do algoritmo Gradient Boosting em combinação com modelos de árvores de decisão e a técnica de amortecimento exponencial. Esta estratégia compreende um método de aprendizado supervisionado que ajusta o modelo de previsão com base em dados históricos do consumo de energia, das temperaturas registradas e de variáveis de calendário. Os modelos propostos foram testados em duas bases de dados distintas e demonstraram um ótimo desempenho quando comparados com resultados publicados em outros trabalhos recentes. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-08-31 |
dc.date.accessioned.fl_str_mv |
2017-03-07T15:06:57Z |
dc.date.available.fl_str_mv |
2017-03-07 2017-03-07T15:06:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/3563 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/3563 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Modelagem Computacional |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/3563/4/victorteixeirademelomayrink.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/3563/1/victorteixeirademelomayrink.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/3563/2/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/3563/3/victorteixeirademelomayrink.pdf.txt |
bitstream.checksum.fl_str_mv |
292c3d4050c20fa962ac2390edcdd7bd 1319cc37a15480796050b618b4d7e5f7 000e18a5aee6ca21bb5811ddf55fc37b 886e228c3dfc5b50ff2b011bb6dbf110 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193860716691456 |