Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve

Detalhes bibliográficos
Autor(a) principal: Andrade, Jonata Jefferson
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/6091
Resumo: No concreto de agregado leve, a resistência à compressão e o módulo de elasticidade são as propriedades mecânicas mais importantes e consequentemente as mais comumente analisadas. A relação entre os componentes do concreto de agregado leve e suas propriedades mecânicas é altamente não linear, e o estabelecimento de um modelo de previsão abrangente de tais características é usualmente problemático. Existem trabalhos que buscam encontrar essa relação de formas empíricas. Há também trabalhos que buscam aplicar técnicas de inteligência computacional para prever essas propriedades a partir dos componentes do concreto. Prever com precisão as propriedades mecânicas do concreto de agregado leve é um problema crítico em projetos de engenharia que utilizam esse material. O objetivo desta dissertação é avaliar o desempenho de diferentes métodos de inteligência computacional para prever a módulo de elasticidade e a resistência à compressão aos 28 dias de concretos de agregados leves em função do fator água/cimento, volume de agregado leve, quantidade de cimento e densidade do agregado leve. Para a escolha da melhor configuração de cada método, foi definida uma metodologia utilizando o algoritmo de otimização PSO (Particle Swarm Optmization). Por fim, é verificada a capacidade de generalização dos métodos através do processo de validação cruzada de modo a encontrar o método que apresenta o melhor desempenho na aproximação das duas propriedades mecânicas.
id UFJF_fa51fbad7de03347e8bd302f3939deaf
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/6091
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Fonseca, Leonardo Goliatt dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771799H1Farage, Michèle Cristina Resendehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4700206Z7Oliveira, Fabrízzio Condé dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766245H8http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8162881J3Andrade, Jonata Jefferson2018-01-23T13:43:37Z2018-01-112018-01-23T13:43:37Z2017-09-27https://repositorio.ufjf.br/jspui/handle/ufjf/6091No concreto de agregado leve, a resistência à compressão e o módulo de elasticidade são as propriedades mecânicas mais importantes e consequentemente as mais comumente analisadas. A relação entre os componentes do concreto de agregado leve e suas propriedades mecânicas é altamente não linear, e o estabelecimento de um modelo de previsão abrangente de tais características é usualmente problemático. Existem trabalhos que buscam encontrar essa relação de formas empíricas. Há também trabalhos que buscam aplicar técnicas de inteligência computacional para prever essas propriedades a partir dos componentes do concreto. Prever com precisão as propriedades mecânicas do concreto de agregado leve é um problema crítico em projetos de engenharia que utilizam esse material. O objetivo desta dissertação é avaliar o desempenho de diferentes métodos de inteligência computacional para prever a módulo de elasticidade e a resistência à compressão aos 28 dias de concretos de agregados leves em função do fator água/cimento, volume de agregado leve, quantidade de cimento e densidade do agregado leve. Para a escolha da melhor configuração de cada método, foi definida uma metodologia utilizando o algoritmo de otimização PSO (Particle Swarm Optmization). Por fim, é verificada a capacidade de generalização dos métodos através do processo de validação cruzada de modo a encontrar o método que apresenta o melhor desempenho na aproximação das duas propriedades mecânicas.In lightweight aggregate concrete, the compressive strength, the elastic modulus and specific weight are the most important properties and consequently the most commonly analyzed. The relationship between lightweight aggregate concrete components and their mechanical properties is highly nonlinear, and establishing a comprehensive predictive model of such characteristics is usually problematic. There are works that seek to find this relation of empirical forms. There are also works that seek to apply computational intelligence techniques to predict these properties from the concrete components. Accurately predicting the mechanical properties of lightweight aggregate concrete is a critical problem in engineering projects that use this material. The objective of this dissertation is to evaluate the performance of different computational intelligence methods to predict the elastic modulus and the compressive strength at 28 days of lightweight aggregates concrete as a function of water/cement factor, lightweight aggregate volume, cement quantity and density of the lightweight aggregate. In order to choose the best configuration of each method, a methodology was defined using the Particle Swarm Optmization (PSO) algorithm. Finally, the generalization of the methods through the cross validation process is verified in order to find the method that presents the best performance in the approximation of the two mechanical properties.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRAInteligência computacionalConcreto de agregado leveOtimizaçãoComputational intelligenceLightweight aggregate concreteOptmizationMétodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leveinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTHUMBNAILjonatajeffersonandrade.pdf.jpgjonatajeffersonandrade.pdf.jpgGenerated Thumbnailimage/jpeg1171https://repositorio.ufjf.br/jspui/bitstream/ufjf/6091/4/jonatajeffersonandrade.pdf.jpg95f3f7f8a4a04d96f5cd7b4e9a50dd0bMD54ORIGINALjonatajeffersonandrade.pdfjonatajeffersonandrade.pdfapplication/pdf3871423https://repositorio.ufjf.br/jspui/bitstream/ufjf/6091/1/jonatajeffersonandrade.pdfe67d44781c780adff8ab0f791d6a9f1cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/6091/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52TEXTjonatajeffersonandrade.pdf.txtjonatajeffersonandrade.pdf.txtExtracted texttext/plain134568https://repositorio.ufjf.br/jspui/bitstream/ufjf/6091/3/jonatajeffersonandrade.pdf.txt17fce0bfe0852655c5bb299e37d8ab31MD53ufjf/60912019-06-16 08:41:29.504oai:hermes.cpd.ufjf.br:ufjf/6091TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-06-16T11:41:29Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve
title Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve
spellingShingle Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve
Andrade, Jonata Jefferson
CNPQ::CIENCIAS EXATAS E DA TERRA
Inteligência computacional
Concreto de agregado leve
Otimização
Computational intelligence
Lightweight aggregate concrete
Optmization
title_short Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve
title_full Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve
title_fullStr Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve
title_full_unstemmed Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve
title_sort Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve
author Andrade, Jonata Jefferson
author_facet Andrade, Jonata Jefferson
author_role author
dc.contributor.advisor1.fl_str_mv Fonseca, Leonardo Goliatt da
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771799H1
dc.contributor.referee1.fl_str_mv Farage, Michèle Cristina Resende
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4700206Z7
dc.contributor.referee2.fl_str_mv Oliveira, Fabrízzio Condé de
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766245H8
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8162881J3
dc.contributor.author.fl_str_mv Andrade, Jonata Jefferson
contributor_str_mv Fonseca, Leonardo Goliatt da
Farage, Michèle Cristina Resende
Oliveira, Fabrízzio Condé de
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Inteligência computacional
Concreto de agregado leve
Otimização
Computational intelligence
Lightweight aggregate concrete
Optmization
dc.subject.por.fl_str_mv Inteligência computacional
Concreto de agregado leve
Otimização
Computational intelligence
Lightweight aggregate concrete
Optmization
description No concreto de agregado leve, a resistência à compressão e o módulo de elasticidade são as propriedades mecânicas mais importantes e consequentemente as mais comumente analisadas. A relação entre os componentes do concreto de agregado leve e suas propriedades mecânicas é altamente não linear, e o estabelecimento de um modelo de previsão abrangente de tais características é usualmente problemático. Existem trabalhos que buscam encontrar essa relação de formas empíricas. Há também trabalhos que buscam aplicar técnicas de inteligência computacional para prever essas propriedades a partir dos componentes do concreto. Prever com precisão as propriedades mecânicas do concreto de agregado leve é um problema crítico em projetos de engenharia que utilizam esse material. O objetivo desta dissertação é avaliar o desempenho de diferentes métodos de inteligência computacional para prever a módulo de elasticidade e a resistência à compressão aos 28 dias de concretos de agregados leves em função do fator água/cimento, volume de agregado leve, quantidade de cimento e densidade do agregado leve. Para a escolha da melhor configuração de cada método, foi definida uma metodologia utilizando o algoritmo de otimização PSO (Particle Swarm Optmization). Por fim, é verificada a capacidade de generalização dos métodos através do processo de validação cruzada de modo a encontrar o método que apresenta o melhor desempenho na aproximação das duas propriedades mecânicas.
publishDate 2017
dc.date.issued.fl_str_mv 2017-09-27
dc.date.accessioned.fl_str_mv 2018-01-23T13:43:37Z
dc.date.available.fl_str_mv 2018-01-11
2018-01-23T13:43:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/6091
url https://repositorio.ufjf.br/jspui/handle/ufjf/6091
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/6091/4/jonatajeffersonandrade.pdf.jpg
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6091/1/jonatajeffersonandrade.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6091/2/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6091/3/jonatajeffersonandrade.pdf.txt
bitstream.checksum.fl_str_mv 95f3f7f8a4a04d96f5cd7b4e9a50dd0b
e67d44781c780adff8ab0f791d6a9f1c
000e18a5aee6ca21bb5811ddf55fc37b
17fce0bfe0852655c5bb299e37d8ab31
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813194025981706240