Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Ciência e Agrotecnologia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542003000200025 |
Resumo: | Uma forma alternativa para verificar suposição de normalidade dos dados, refere-se à aplicação de testes baseados nos coeficiente de assimetria e curtose. Realizou-se este trabalho com o objetivo de determinar um tamanho amostral ótimo para as estatísticas univariadas (Z1 e Z2) e multivariadas (K1 e K2) que, neste caso, foram consideradas como univariadas, com base em simulação. As estatísticas Z1 e K1 estão associados às medidas de simetria e K2 e K2 às de curtose. Foram geradas diferentes funções de densidade de probabilidade univariadas, via método de Monte Carlo, com a finalidade de avaliar o erro tipo I e o poder do teste. As simulações foram feitas adotando-se os níveis de probabilidade de 5% e 1%. O critério de avaliação, no caso univariado, foi o da comparação das taxas de poder estimadas com o valor das taxas de poder empírico obtidas pelo teste de Shapiro & Wilk (1965). Pelos resultados, verificou-se que as estatísticas Z1 e Z2 possuem aproximação assintótica normal para n>25, com α =5% e podem ser recomendadas para uso rotineiro no caso univariado para testar a hipótese de normalidade dos dados; as estatísticas K1 e K2 possuem aproximações assintóticas melhores que Z1e Z2 para um menor valor do nível nominal de significância, sendo recomendadas para n>25 e n>100, respectivamente, garantindo-se o controle da taxa de erro tipo I e um alto poder. No caso de distribuições com simetria próxima de zero e não-normais, as estatísticas baseadas em desvios de simetria apresentam maior poder do que a estatística W de Shapiro-Wilk. Finalmente, pode-se concluir que a estatística de assimetria, em geral, é mais poderosa do que à de curtose, mas os testes da hipótese nula de normalidade devem considerar tanto os testes de desvios de simetria como os de curtose conjuntamente. |
id |
UFLA-2_94599efa08e3cbb19b8d9824dd1cb585 |
---|---|
oai_identifier_str |
oai:scielo:S1413-70542003000200025 |
network_acronym_str |
UFLA-2 |
network_name_str |
Ciência e Agrotecnologia (Online) |
repository_id_str |
|
spelling |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariadaAssimetriacurtoseteste de normalidade univariadotaxa de erro tipo I e poder do testeUma forma alternativa para verificar suposição de normalidade dos dados, refere-se à aplicação de testes baseados nos coeficiente de assimetria e curtose. Realizou-se este trabalho com o objetivo de determinar um tamanho amostral ótimo para as estatísticas univariadas (Z1 e Z2) e multivariadas (K1 e K2) que, neste caso, foram consideradas como univariadas, com base em simulação. As estatísticas Z1 e K1 estão associados às medidas de simetria e K2 e K2 às de curtose. Foram geradas diferentes funções de densidade de probabilidade univariadas, via método de Monte Carlo, com a finalidade de avaliar o erro tipo I e o poder do teste. As simulações foram feitas adotando-se os níveis de probabilidade de 5% e 1%. O critério de avaliação, no caso univariado, foi o da comparação das taxas de poder estimadas com o valor das taxas de poder empírico obtidas pelo teste de Shapiro & Wilk (1965). Pelos resultados, verificou-se que as estatísticas Z1 e Z2 possuem aproximação assintótica normal para n>25, com α =5% e podem ser recomendadas para uso rotineiro no caso univariado para testar a hipótese de normalidade dos dados; as estatísticas K1 e K2 possuem aproximações assintóticas melhores que Z1e Z2 para um menor valor do nível nominal de significância, sendo recomendadas para n>25 e n>100, respectivamente, garantindo-se o controle da taxa de erro tipo I e um alto poder. No caso de distribuições com simetria próxima de zero e não-normais, as estatísticas baseadas em desvios de simetria apresentam maior poder do que a estatística W de Shapiro-Wilk. Finalmente, pode-se concluir que a estatística de assimetria, em geral, é mais poderosa do que à de curtose, mas os testes da hipótese nula de normalidade devem considerar tanto os testes de desvios de simetria como os de curtose conjuntamente.Editora da UFLA2003-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542003000200025Ciência e Agrotecnologia v.27 n.2 2003reponame:Ciência e Agrotecnologia (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLA10.1590/S1413-70542003000200025info:eu-repo/semantics/openAccessSantos,Andréa Cristiane dosFerreira,Daniel Furtadopor2011-02-15T00:00:00Zoai:scielo:S1413-70542003000200025Revistahttp://www.scielo.br/cagroPUBhttps://old.scielo.br/oai/scielo-oai.php||renpaiva@dbi.ufla.br|| editora@editora.ufla.br1981-18291413-7054opendoar:2022-11-22T16:29:19.968897Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada |
title |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada |
spellingShingle |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada Santos,Andréa Cristiane dos Assimetria curtose teste de normalidade univariado taxa de erro tipo I e poder do teste |
title_short |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada |
title_full |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada |
title_fullStr |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada |
title_full_unstemmed |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada |
title_sort |
Definição do tamanho amostral usando simulação Monte Carlo para o teste de normalidade baseado em assimetria e curtose: I. Abordagem univariada |
author |
Santos,Andréa Cristiane dos |
author_facet |
Santos,Andréa Cristiane dos Ferreira,Daniel Furtado |
author_role |
author |
author2 |
Ferreira,Daniel Furtado |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Santos,Andréa Cristiane dos Ferreira,Daniel Furtado |
dc.subject.por.fl_str_mv |
Assimetria curtose teste de normalidade univariado taxa de erro tipo I e poder do teste |
topic |
Assimetria curtose teste de normalidade univariado taxa de erro tipo I e poder do teste |
description |
Uma forma alternativa para verificar suposição de normalidade dos dados, refere-se à aplicação de testes baseados nos coeficiente de assimetria e curtose. Realizou-se este trabalho com o objetivo de determinar um tamanho amostral ótimo para as estatísticas univariadas (Z1 e Z2) e multivariadas (K1 e K2) que, neste caso, foram consideradas como univariadas, com base em simulação. As estatísticas Z1 e K1 estão associados às medidas de simetria e K2 e K2 às de curtose. Foram geradas diferentes funções de densidade de probabilidade univariadas, via método de Monte Carlo, com a finalidade de avaliar o erro tipo I e o poder do teste. As simulações foram feitas adotando-se os níveis de probabilidade de 5% e 1%. O critério de avaliação, no caso univariado, foi o da comparação das taxas de poder estimadas com o valor das taxas de poder empírico obtidas pelo teste de Shapiro & Wilk (1965). Pelos resultados, verificou-se que as estatísticas Z1 e Z2 possuem aproximação assintótica normal para n>25, com α =5% e podem ser recomendadas para uso rotineiro no caso univariado para testar a hipótese de normalidade dos dados; as estatísticas K1 e K2 possuem aproximações assintóticas melhores que Z1e Z2 para um menor valor do nível nominal de significância, sendo recomendadas para n>25 e n>100, respectivamente, garantindo-se o controle da taxa de erro tipo I e um alto poder. No caso de distribuições com simetria próxima de zero e não-normais, as estatísticas baseadas em desvios de simetria apresentam maior poder do que a estatística W de Shapiro-Wilk. Finalmente, pode-se concluir que a estatística de assimetria, em geral, é mais poderosa do que à de curtose, mas os testes da hipótese nula de normalidade devem considerar tanto os testes de desvios de simetria como os de curtose conjuntamente. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542003000200025 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542003000200025 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/S1413-70542003000200025 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
Ciência e Agrotecnologia v.27 n.2 2003 reponame:Ciência e Agrotecnologia (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Ciência e Agrotecnologia (Online) |
collection |
Ciência e Agrotecnologia (Online) |
repository.name.fl_str_mv |
Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
||renpaiva@dbi.ufla.br|| editora@editora.ufla.br |
_version_ |
1799874960220487680 |