Silvopastoral systems drive the nitrogen-cycling bacterial community in soil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Ciência e Agrotecnologia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542018000300281 |
Resumo: | ABSTRACT Intercropping tree legumes with forage grasses in a silvopastoral system can avoid pasture degradation benefiting the soil. In such a system, nitrogen (N) is supplied by symbiosis between legumes and bacteria. However, the pasture quality determines the action of free-living nitrogen-fixing bacteria, which possess nifH genes, which encode nitrogenase enzyme. Ammonium-oxidizing bacteria (AOB), involved in the nitrification step, can be evaluated by specific regions of the 16S rRNA corresponding to AOB. Thus, we investigated the influence of the introduction of tree legumes into a silvopastoral system on the community structure and abundance of total bacteria, diazotrophic bacteria and ammonium-oxidizing bacteria by DGGE (denaturing gradient gel electrophoresis) and real-time qPCR (quantitative PCR). The experiment involved nine plots of one hectare each, planted with sabia (Mimosa caesalpinifolia), a Gliricidia species (Gliricidia sepium), and a Brachiaria species (Brachiaria decumbens) in a randomized block design, forming three treatments: I-Brachiaria intercropped with sabia; II-Brachiaria intercropped with Gliricidia and III-Brachiaria only, with three replicates. The structures of the total bacterial and ammonium-oxidizing bacterial communities were influenced by tree legume introduction, possibly through modification of the soil chemical attributes. The copy numbers of total bacteria, ammonium-oxidizing bacteria and diazotrophic bacteria were higher in soils planted with legumes, which provided better conditions for microbial growth compared to planting with the Brachiaria species alone. Silvopastoral management with tree legumes improves the biological quality of soil, favouring the bacterial community linked to N-cycling. |
id |
UFLA-2_c0f440044068eaf8218f18b68b16ed3e |
---|---|
oai_identifier_str |
oai:scielo:S1413-70542018000300281 |
network_acronym_str |
UFLA-2 |
network_name_str |
Ciência e Agrotecnologia (Online) |
repository_id_str |
|
spelling |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soilTree legumesBrachiaria16 rRNAAOBnifH.ABSTRACT Intercropping tree legumes with forage grasses in a silvopastoral system can avoid pasture degradation benefiting the soil. In such a system, nitrogen (N) is supplied by symbiosis between legumes and bacteria. However, the pasture quality determines the action of free-living nitrogen-fixing bacteria, which possess nifH genes, which encode nitrogenase enzyme. Ammonium-oxidizing bacteria (AOB), involved in the nitrification step, can be evaluated by specific regions of the 16S rRNA corresponding to AOB. Thus, we investigated the influence of the introduction of tree legumes into a silvopastoral system on the community structure and abundance of total bacteria, diazotrophic bacteria and ammonium-oxidizing bacteria by DGGE (denaturing gradient gel electrophoresis) and real-time qPCR (quantitative PCR). The experiment involved nine plots of one hectare each, planted with sabia (Mimosa caesalpinifolia), a Gliricidia species (Gliricidia sepium), and a Brachiaria species (Brachiaria decumbens) in a randomized block design, forming three treatments: I-Brachiaria intercropped with sabia; II-Brachiaria intercropped with Gliricidia and III-Brachiaria only, with three replicates. The structures of the total bacterial and ammonium-oxidizing bacterial communities were influenced by tree legume introduction, possibly through modification of the soil chemical attributes. The copy numbers of total bacteria, ammonium-oxidizing bacteria and diazotrophic bacteria were higher in soils planted with legumes, which provided better conditions for microbial growth compared to planting with the Brachiaria species alone. Silvopastoral management with tree legumes improves the biological quality of soil, favouring the bacterial community linked to N-cycling.Editora da UFLA2018-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542018000300281Ciência e Agrotecnologia v.42 n.3 2018reponame:Ciência e Agrotecnologia (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLA10.1590/1413-70542018423031117info:eu-repo/semantics/openAccessBarros,Felipe Martins do RêgoFracetto,Giselle Gomes MonteiroFracetto,Felipe José CuryMendes Júnior,José PetrônioAraújo,Victor Lucas Vieira Prudêncio deLira Junior,Mario Andradeeng2018-08-13T00:00:00Zoai:scielo:S1413-70542018000300281Revistahttp://www.scielo.br/cagroPUBhttps://old.scielo.br/oai/scielo-oai.php||renpaiva@dbi.ufla.br|| editora@editora.ufla.br1981-18291413-7054opendoar:2022-11-22T16:31:35.111473Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soil |
title |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soil |
spellingShingle |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soil Barros,Felipe Martins do Rêgo Tree legumes Brachiaria 16 rRNA AOB nifH. |
title_short |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soil |
title_full |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soil |
title_fullStr |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soil |
title_full_unstemmed |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soil |
title_sort |
Silvopastoral systems drive the nitrogen-cycling bacterial community in soil |
author |
Barros,Felipe Martins do Rêgo |
author_facet |
Barros,Felipe Martins do Rêgo Fracetto,Giselle Gomes Monteiro Fracetto,Felipe José Cury Mendes Júnior,José Petrônio Araújo,Victor Lucas Vieira Prudêncio de Lira Junior,Mario Andrade |
author_role |
author |
author2 |
Fracetto,Giselle Gomes Monteiro Fracetto,Felipe José Cury Mendes Júnior,José Petrônio Araújo,Victor Lucas Vieira Prudêncio de Lira Junior,Mario Andrade |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Barros,Felipe Martins do Rêgo Fracetto,Giselle Gomes Monteiro Fracetto,Felipe José Cury Mendes Júnior,José Petrônio Araújo,Victor Lucas Vieira Prudêncio de Lira Junior,Mario Andrade |
dc.subject.por.fl_str_mv |
Tree legumes Brachiaria 16 rRNA AOB nifH. |
topic |
Tree legumes Brachiaria 16 rRNA AOB nifH. |
description |
ABSTRACT Intercropping tree legumes with forage grasses in a silvopastoral system can avoid pasture degradation benefiting the soil. In such a system, nitrogen (N) is supplied by symbiosis between legumes and bacteria. However, the pasture quality determines the action of free-living nitrogen-fixing bacteria, which possess nifH genes, which encode nitrogenase enzyme. Ammonium-oxidizing bacteria (AOB), involved in the nitrification step, can be evaluated by specific regions of the 16S rRNA corresponding to AOB. Thus, we investigated the influence of the introduction of tree legumes into a silvopastoral system on the community structure and abundance of total bacteria, diazotrophic bacteria and ammonium-oxidizing bacteria by DGGE (denaturing gradient gel electrophoresis) and real-time qPCR (quantitative PCR). The experiment involved nine plots of one hectare each, planted with sabia (Mimosa caesalpinifolia), a Gliricidia species (Gliricidia sepium), and a Brachiaria species (Brachiaria decumbens) in a randomized block design, forming three treatments: I-Brachiaria intercropped with sabia; II-Brachiaria intercropped with Gliricidia and III-Brachiaria only, with three replicates. The structures of the total bacterial and ammonium-oxidizing bacterial communities were influenced by tree legume introduction, possibly through modification of the soil chemical attributes. The copy numbers of total bacteria, ammonium-oxidizing bacteria and diazotrophic bacteria were higher in soils planted with legumes, which provided better conditions for microbial growth compared to planting with the Brachiaria species alone. Silvopastoral management with tree legumes improves the biological quality of soil, favouring the bacterial community linked to N-cycling. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542018000300281 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542018000300281 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1413-70542018423031117 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
Ciência e Agrotecnologia v.42 n.3 2018 reponame:Ciência e Agrotecnologia (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Ciência e Agrotecnologia (Online) |
collection |
Ciência e Agrotecnologia (Online) |
repository.name.fl_str_mv |
Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
||renpaiva@dbi.ufla.br|| editora@editora.ufla.br |
_version_ |
1799874970740850688 |