Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Ciência e Agrotecnologia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542006000200007 |
Resumo: | Na pesquisa agropecuária é comum o estudo de vários fatores e freqüentemente ocorrem perdas de observações, constituindo assim um experimento desbalanceado. É necessário conhecer as hipóteses testadas através dos sistemas estatísticos e ocorrendo caselas vazias a interpretação é ainda mais complexa, pois geralmente, as hipóteses sobre os efeitos principais de um dos fatores contêm os efeitos principais de outros fatores e os efeitos de interações. Adotando o modelo superparametrizado, com este trabalho, objetivou-se desenvolver esquemas de análises de variâncias de dados desbalanceados e/ou com caselas vazias, identificar e interpretar as hipóteses associadas às somas de quadrados através do procedimento General Linear Models (GLM) do Statistical Analysis System (SAS), que provêm quatro tipos de somas de quadrados. Foram analisados dois casos distintos, utilizando dados referentes ao peso comercial de cenoura, provenientes de experimento inteiramente ao acaso, tendo como fatores cultivares e fases da lua como épocas de plantio. Em face aos resultados obtidos, verificou-se que, quando os dados são desbalanceados, as funções estimáveis de um fator envolvem os parâmetros relativos ao fator e os componentes das interações nas quais o fator está presente; as somas de quadrados do tipo III equivalentes as do tipo IV e a ordenação dos fatores principais não afeta as hipóteses do tipo I. Entretanto, quando ocorreram caselas vazias no modelo com dois fatores, os quatro tipos de somas de quadrados para o fator principal de entrada foram diferentes e; a ordenação é fundamental para obtenção das hipóteses do tipo I. Quando ocorrem perdas de parcelas, a identificação das funções estimáveis é complexa e as hipóteses ficam de difícil interpretação. Nas funções estimáveis de interações ocorrem parâmetros da própria interação. Diferenças entre níveis do fator A somente podem ser estimados na presença de efeitos médios do fator B e da interação. |
id |
UFLA-2_dd43fc7f56885c2ce46eda8b6b62a00b |
---|---|
oai_identifier_str |
oai:scielo:S1413-70542006000200007 |
network_acronym_str |
UFLA-2 |
network_name_str |
Ciência e Agrotecnologia (Online) |
repository_id_str |
|
spelling |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatoresModelo linearsomas de quadradosdados desbalanceadoscaselas vaziasNa pesquisa agropecuária é comum o estudo de vários fatores e freqüentemente ocorrem perdas de observações, constituindo assim um experimento desbalanceado. É necessário conhecer as hipóteses testadas através dos sistemas estatísticos e ocorrendo caselas vazias a interpretação é ainda mais complexa, pois geralmente, as hipóteses sobre os efeitos principais de um dos fatores contêm os efeitos principais de outros fatores e os efeitos de interações. Adotando o modelo superparametrizado, com este trabalho, objetivou-se desenvolver esquemas de análises de variâncias de dados desbalanceados e/ou com caselas vazias, identificar e interpretar as hipóteses associadas às somas de quadrados através do procedimento General Linear Models (GLM) do Statistical Analysis System (SAS), que provêm quatro tipos de somas de quadrados. Foram analisados dois casos distintos, utilizando dados referentes ao peso comercial de cenoura, provenientes de experimento inteiramente ao acaso, tendo como fatores cultivares e fases da lua como épocas de plantio. Em face aos resultados obtidos, verificou-se que, quando os dados são desbalanceados, as funções estimáveis de um fator envolvem os parâmetros relativos ao fator e os componentes das interações nas quais o fator está presente; as somas de quadrados do tipo III equivalentes as do tipo IV e a ordenação dos fatores principais não afeta as hipóteses do tipo I. Entretanto, quando ocorreram caselas vazias no modelo com dois fatores, os quatro tipos de somas de quadrados para o fator principal de entrada foram diferentes e; a ordenação é fundamental para obtenção das hipóteses do tipo I. Quando ocorrem perdas de parcelas, a identificação das funções estimáveis é complexa e as hipóteses ficam de difícil interpretação. Nas funções estimáveis de interações ocorrem parâmetros da própria interação. Diferenças entre níveis do fator A somente podem ser estimados na presença de efeitos médios do fator B e da interação.Editora da UFLA2006-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542006000200007Ciência e Agrotecnologia v.30 n.2 2006reponame:Ciência e Agrotecnologia (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLA10.1590/S1413-70542006000200007info:eu-repo/semantics/openAccessManso,Eliana MaraMorais,Augusto Ramalho depor2008-08-20T00:00:00Zoai:scielo:S1413-70542006000200007Revistahttp://www.scielo.br/cagroPUBhttps://old.scielo.br/oai/scielo-oai.php||renpaiva@dbi.ufla.br|| editora@editora.ufla.br1981-18291413-7054opendoar:2022-11-22T16:29:51.203801Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores |
title |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores |
spellingShingle |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores Manso,Eliana Mara Modelo linear somas de quadrados dados desbalanceados caselas vazias |
title_short |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores |
title_full |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores |
title_fullStr |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores |
title_full_unstemmed |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores |
title_sort |
Emprego do modelo superparametrizado em experiemento fatorial desbalanceado com dois fatores |
author |
Manso,Eliana Mara |
author_facet |
Manso,Eliana Mara Morais,Augusto Ramalho de |
author_role |
author |
author2 |
Morais,Augusto Ramalho de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Manso,Eliana Mara Morais,Augusto Ramalho de |
dc.subject.por.fl_str_mv |
Modelo linear somas de quadrados dados desbalanceados caselas vazias |
topic |
Modelo linear somas de quadrados dados desbalanceados caselas vazias |
description |
Na pesquisa agropecuária é comum o estudo de vários fatores e freqüentemente ocorrem perdas de observações, constituindo assim um experimento desbalanceado. É necessário conhecer as hipóteses testadas através dos sistemas estatísticos e ocorrendo caselas vazias a interpretação é ainda mais complexa, pois geralmente, as hipóteses sobre os efeitos principais de um dos fatores contêm os efeitos principais de outros fatores e os efeitos de interações. Adotando o modelo superparametrizado, com este trabalho, objetivou-se desenvolver esquemas de análises de variâncias de dados desbalanceados e/ou com caselas vazias, identificar e interpretar as hipóteses associadas às somas de quadrados através do procedimento General Linear Models (GLM) do Statistical Analysis System (SAS), que provêm quatro tipos de somas de quadrados. Foram analisados dois casos distintos, utilizando dados referentes ao peso comercial de cenoura, provenientes de experimento inteiramente ao acaso, tendo como fatores cultivares e fases da lua como épocas de plantio. Em face aos resultados obtidos, verificou-se que, quando os dados são desbalanceados, as funções estimáveis de um fator envolvem os parâmetros relativos ao fator e os componentes das interações nas quais o fator está presente; as somas de quadrados do tipo III equivalentes as do tipo IV e a ordenação dos fatores principais não afeta as hipóteses do tipo I. Entretanto, quando ocorreram caselas vazias no modelo com dois fatores, os quatro tipos de somas de quadrados para o fator principal de entrada foram diferentes e; a ordenação é fundamental para obtenção das hipóteses do tipo I. Quando ocorrem perdas de parcelas, a identificação das funções estimáveis é complexa e as hipóteses ficam de difícil interpretação. Nas funções estimáveis de interações ocorrem parâmetros da própria interação. Diferenças entre níveis do fator A somente podem ser estimados na presença de efeitos médios do fator B e da interação. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542006000200007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542006000200007 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/S1413-70542006000200007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
Ciência e Agrotecnologia v.30 n.2 2006 reponame:Ciência e Agrotecnologia (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Ciência e Agrotecnologia (Online) |
collection |
Ciência e Agrotecnologia (Online) |
repository.name.fl_str_mv |
Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
||renpaiva@dbi.ufla.br|| editora@editora.ufla.br |
_version_ |
1799874962655281152 |