MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cerne (Online) |
Texto Completo: | https://cerne.ufla.br/site/index.php/CERNE/article/view/1199 |
Resumo: | Using a monthly time series of charcoal prices in Minas Gerais from January 2000 to September 2014, this study aimed to evaluate the use of neuro-fuzzy system to model the series and forecasting prices. We used four modeling structures for different prices lags (1, 2, 3, 4 and 5 lags). The structure most appropriate for neuro-fuzzy system was chosen based on the root mean square error, mean absolute error, mean squared error, mean absolute percentage error and maximum absolute percentage error for the forecasted period. With the results found, it is possible to conclude that a neuro-fuzzy system can be used properly to predict the charcoal prices. |
id |
UFLA-3_0dd101258e7e2722eb5abfc13f1b442e |
---|---|
oai_identifier_str |
oai:cerne.ufla.br:article/1199 |
network_acronym_str |
UFLA-3 |
network_name_str |
Cerne (Online) |
repository_id_str |
|
spelling |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEMTime seriesComputational intelligenceANFISUsing a monthly time series of charcoal prices in Minas Gerais from January 2000 to September 2014, this study aimed to evaluate the use of neuro-fuzzy system to model the series and forecasting prices. We used four modeling structures for different prices lags (1, 2, 3, 4 and 5 lags). The structure most appropriate for neuro-fuzzy system was chosen based on the root mean square error, mean absolute error, mean squared error, mean absolute percentage error and maximum absolute percentage error for the forecasted period. With the results found, it is possible to conclude that a neuro-fuzzy system can be used properly to predict the charcoal prices.CERNECERNE2016-06-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/1199CERNE; Vol. 22 No. 2 (2016); 151-158CERNE; v. 22 n. 2 (2016); 151-1582317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://cerne.ufla.br/site/index.php/CERNE/article/view/1199/916Copyright (c) 2016 CERNEinfo:eu-repo/semantics/openAccessAraújo Júnior, Carlos AlbertoSilva, Liniker Fernandes daLeite, Helio GarciaValdetaro, Erlon BarbosaDonato, Danilo BarrosCastro, Renato Vinícius Oliveira Castro2016-07-08T11:19:26Zoai:cerne.ufla.br:article/1199Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:54:27.803511Cerne (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM |
title |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM |
spellingShingle |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM Araújo Júnior, Carlos Alberto Time series Computational intelligence ANFIS |
title_short |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM |
title_full |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM |
title_fullStr |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM |
title_full_unstemmed |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM |
title_sort |
MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM |
author |
Araújo Júnior, Carlos Alberto |
author_facet |
Araújo Júnior, Carlos Alberto Silva, Liniker Fernandes da Leite, Helio Garcia Valdetaro, Erlon Barbosa Donato, Danilo Barros Castro, Renato Vinícius Oliveira Castro |
author_role |
author |
author2 |
Silva, Liniker Fernandes da Leite, Helio Garcia Valdetaro, Erlon Barbosa Donato, Danilo Barros Castro, Renato Vinícius Oliveira Castro |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Araújo Júnior, Carlos Alberto Silva, Liniker Fernandes da Leite, Helio Garcia Valdetaro, Erlon Barbosa Donato, Danilo Barros Castro, Renato Vinícius Oliveira Castro |
dc.subject.por.fl_str_mv |
Time series Computational intelligence ANFIS |
topic |
Time series Computational intelligence ANFIS |
description |
Using a monthly time series of charcoal prices in Minas Gerais from January 2000 to September 2014, this study aimed to evaluate the use of neuro-fuzzy system to model the series and forecasting prices. We used four modeling structures for different prices lags (1, 2, 3, 4 and 5 lags). The structure most appropriate for neuro-fuzzy system was chosen based on the root mean square error, mean absolute error, mean squared error, mean absolute percentage error and maximum absolute percentage error for the forecasted period. With the results found, it is possible to conclude that a neuro-fuzzy system can be used properly to predict the charcoal prices. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-08 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1199 |
url |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1199 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/1199/916 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 CERNE info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 CERNE |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
CERNE CERNE |
publisher.none.fl_str_mv |
CERNE CERNE |
dc.source.none.fl_str_mv |
CERNE; Vol. 22 No. 2 (2016); 151-158 CERNE; v. 22 n. 2 (2016); 151-158 2317-6342 0104-7760 reponame:Cerne (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Cerne (Online) |
collection |
Cerne (Online) |
repository.name.fl_str_mv |
Cerne (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
cerne@dcf.ufla.br||cerne@dcf.ufla.br |
_version_ |
1799874942913740800 |