Modelling and forecast of charcoal prices using a neuro-fuzzy system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/14092 |
Resumo: | Using a monthly time series of charcoal prices in Minas Gerais from January 2000 to September 2014, this study aimed to evaluate the use of neuro-fuzzy system to model the series and forecasting prices. We used four modeling structures for different prices lags (1, 2, 3, 4 and 5 lags). The structure most appropriate for neuro-fuzzy system was chosen based on the root mean square error, mean absolute error, mean squared error, mean absolute percentage error and maximum absolute percentage error for the forecasted period. With the results found, it is possible to conclude that a neuro-fuzzy system can be used properly to predict the charcoal prices. |
id |
UFLA_6ef4a9f1fcb5d5e530ecde4c77ea46d2 |
---|---|
oai_identifier_str |
oai:localhost:1/14092 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Modelling and forecast of charcoal prices using a neuro-fuzzy systemModelagem e prognose do preço de carvão usando um sistema neuro-fuzzyTime seriesComputational intelligenceANFISAdaptive network-based fuzzy inference systemSérie temporalInteligência computacionalSistema de inferência neuro-fuzzy adaptávelUsing a monthly time series of charcoal prices in Minas Gerais from January 2000 to September 2014, this study aimed to evaluate the use of neuro-fuzzy system to model the series and forecasting prices. We used four modeling structures for different prices lags (1, 2, 3, 4 and 5 lags). The structure most appropriate for neuro-fuzzy system was chosen based on the root mean square error, mean absolute error, mean squared error, mean absolute percentage error and maximum absolute percentage error for the forecasted period. With the results found, it is possible to conclude that a neuro-fuzzy system can be used properly to predict the charcoal prices.Utilizando dados da série temporal mensal de preços de carvão vegetal em Minas Gerais no período de janeiro de 2000 à setembro de 2014, este estudo teve como objetivo avaliar o uso do sistema neuro-fuzzy para modelagem e previsão de preços. Foram utilizados quatro estruturas de modelagem considerando diferentes defasagens da variável preço (1, 2, 3, 4 e 5 defasagens). A estrutura mais adequada para o sistema neurofuzzy foi escolhido com base nos valores de raiz quadrada do erro médio quadrático, erro médio absoluto, erro médio quadrático, erro médio percentual absoluto e máximo erro percentual absoluto para o período de previsão. Com os resultados encontrados, é possível concluir que um sistema neuro-fuzzy pode ser usado para prever corretamente os preços do carvão vegetal.Universidade Federal de Lavras (UFLA)2016-06-082017-08-01T20:13:35Z2017-08-01T20:13:35Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfARAÚJO JÚNIOR, C. A. et al. Modelling and forecast of charcoal prices using a neuro-fuzzy system. CERNE, [S.l.], v. 22, n. 2, p. 151-158, 2016. DOI: 10.1590/0104776020162222103.http://repositorio.ufla.br/jspui/handle/1/140922317-63420104-7760reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.cerne.ufla.br/site/index.php/CERNE/article/view/1199/916Copyright (c) 2016 CERNEhttp://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccessAraújo Júnior, Carlos AlbertoSilva, Liniker Fernandes daLeite, Helio GarciaValdetaro, Erlon BarbosaDonato, Danilo BarrosCastro, Renato Vinícius Oliveira Castro2021-07-19T02:02:46Zoai:localhost:1/14092Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-07-19T02:02:46Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Modelling and forecast of charcoal prices using a neuro-fuzzy system Modelagem e prognose do preço de carvão usando um sistema neuro-fuzzy |
title |
Modelling and forecast of charcoal prices using a neuro-fuzzy system |
spellingShingle |
Modelling and forecast of charcoal prices using a neuro-fuzzy system Araújo Júnior, Carlos Alberto Time series Computational intelligence ANFIS Adaptive network-based fuzzy inference system Série temporal Inteligência computacional Sistema de inferência neuro-fuzzy adaptável |
title_short |
Modelling and forecast of charcoal prices using a neuro-fuzzy system |
title_full |
Modelling and forecast of charcoal prices using a neuro-fuzzy system |
title_fullStr |
Modelling and forecast of charcoal prices using a neuro-fuzzy system |
title_full_unstemmed |
Modelling and forecast of charcoal prices using a neuro-fuzzy system |
title_sort |
Modelling and forecast of charcoal prices using a neuro-fuzzy system |
author |
Araújo Júnior, Carlos Alberto |
author_facet |
Araújo Júnior, Carlos Alberto Silva, Liniker Fernandes da Leite, Helio Garcia Valdetaro, Erlon Barbosa Donato, Danilo Barros Castro, Renato Vinícius Oliveira Castro |
author_role |
author |
author2 |
Silva, Liniker Fernandes da Leite, Helio Garcia Valdetaro, Erlon Barbosa Donato, Danilo Barros Castro, Renato Vinícius Oliveira Castro |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Araújo Júnior, Carlos Alberto Silva, Liniker Fernandes da Leite, Helio Garcia Valdetaro, Erlon Barbosa Donato, Danilo Barros Castro, Renato Vinícius Oliveira Castro |
dc.subject.por.fl_str_mv |
Time series Computational intelligence ANFIS Adaptive network-based fuzzy inference system Série temporal Inteligência computacional Sistema de inferência neuro-fuzzy adaptável |
topic |
Time series Computational intelligence ANFIS Adaptive network-based fuzzy inference system Série temporal Inteligência computacional Sistema de inferência neuro-fuzzy adaptável |
description |
Using a monthly time series of charcoal prices in Minas Gerais from January 2000 to September 2014, this study aimed to evaluate the use of neuro-fuzzy system to model the series and forecasting prices. We used four modeling structures for different prices lags (1, 2, 3, 4 and 5 lags). The structure most appropriate for neuro-fuzzy system was chosen based on the root mean square error, mean absolute error, mean squared error, mean absolute percentage error and maximum absolute percentage error for the forecasted period. With the results found, it is possible to conclude that a neuro-fuzzy system can be used properly to predict the charcoal prices. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-08 2017-08-01T20:13:35Z 2017-08-01T20:13:35Z 2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ARAÚJO JÚNIOR, C. A. et al. Modelling and forecast of charcoal prices using a neuro-fuzzy system. CERNE, [S.l.], v. 22, n. 2, p. 151-158, 2016. DOI: 10.1590/0104776020162222103. http://repositorio.ufla.br/jspui/handle/1/14092 |
identifier_str_mv |
ARAÚJO JÚNIOR, C. A. et al. Modelling and forecast of charcoal prices using a neuro-fuzzy system. CERNE, [S.l.], v. 22, n. 2, p. 151-158, 2016. DOI: 10.1590/0104776020162222103. |
url |
http://repositorio.ufla.br/jspui/handle/1/14092 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.cerne.ufla.br/site/index.php/CERNE/article/view/1199/916 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 CERNE http://creativecommons.org/licenses/by/4.0/ Attribution 4.0 International info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 CERNE http://creativecommons.org/licenses/by/4.0/ Attribution 4.0 International |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA) |
publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA) |
dc.source.none.fl_str_mv |
2317-6342 0104-7760 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439005205921792 |