FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE

Detalhes bibliográficos
Autor(a) principal: Özçelik, Ramazan
Data de Publicação: 2020
Outros Autores: Alkan, Onur
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cerne (Online)
Texto Completo: https://cerne.ufla.br/site/index.php/CERNE/article/view/2509
Resumo: Taper  models  are  one  of  several  necessary  tools  in  modern  forest  inventory,  giving  information  on  diameter  at  any  point  along  the  tree  stem  and  this  information  can  also  be used to estimate stem volume. In this study, we used nonlinear mixed-effects (NLME) modeling approach to minimize existing statistical problems in constructing taper equations. A segmented taper model of Max and Burkhart (1976) was fitted using this approach to consider  for  within-  and  between-tree  variation  in  brutian  pine  (Pinus  brutia  Ten.)  stem  taper. Based on evaluation statistics, the model including random-effects parameters β1, β3 and β4 were found to be the best. Inclusion of random parameters were not completely eliminated heterogenous variance and autocorrelation in residuals. Incorporating variance function  and  a  continuous  autoregressive  error  structure  (CAR(1))  to  NLME  Max  and  Burkhart model removed the heteroscedasticity and autocorrelation in residuals. Upper stem diameters were used to localized stem taper model to individual tree. For this, two different  measurement  scenarios  were  evaluated  as  one  and  two  upper  stem  diameter  measurements. Inclusion of random parameters were improved the predictive capability of taper model in particularly the middle and lower sections of stem based on upper stem diameter measurements. The calibration using upper stem diameter measurements can improve the tree-level accuracy of stem taper model is therefore recommended.
id UFLA-3_3e1eba8163dee88714b04b75b4baf19e
oai_identifier_str oai:cerne.ufla.br:article/2509
network_acronym_str UFLA-3
network_name_str Cerne (Online)
repository_id_str
spelling FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINEFITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINEstem taperlocalizationpredictionvariance functionrandom parametersTaper  models  are  one  of  several  necessary  tools  in  modern  forest  inventory,  giving  information  on  diameter  at  any  point  along  the  tree  stem  and  this  information  can  also  be used to estimate stem volume. In this study, we used nonlinear mixed-effects (NLME) modeling approach to minimize existing statistical problems in constructing taper equations. A segmented taper model of Max and Burkhart (1976) was fitted using this approach to consider  for  within-  and  between-tree  variation  in  brutian  pine  (Pinus  brutia  Ten.)  stem  taper. Based on evaluation statistics, the model including random-effects parameters β1, β3 and β4 were found to be the best. Inclusion of random parameters were not completely eliminated heterogenous variance and autocorrelation in residuals. Incorporating variance function  and  a  continuous  autoregressive  error  structure  (CAR(1))  to  NLME  Max  and  Burkhart model removed the heteroscedasticity and autocorrelation in residuals. Upper stem diameters were used to localized stem taper model to individual tree. For this, two different  measurement  scenarios  were  evaluated  as  one  and  two  upper  stem  diameter  measurements. Inclusion of random parameters were improved the predictive capability of taper model in particularly the middle and lower sections of stem based on upper stem diameter measurements. The calibration using upper stem diameter measurements can improve the tree-level accuracy of stem taper model is therefore recommended.Taper  models  are  one  of  several  necessary  tools  in  modern  forest  inventory,  giving  information  on  diameter  at  any  point  along  the  tree  stem  and  this  information  can  also  be used to estimate stem volume. In this study, we used nonlinear mixed-effects (NLME) modeling approach to minimize existing statistical problems in constructing taper equations. A segmented taper model of Max and Burkhart (1976) was fitted using this approach to consider  for  within-  and  between-tree  variation  in  brutian  pine  (Pinus  brutia  Ten.)  stem  taper. Based on evaluation statistics, the model including random-effects parameters β1, β3 and β4 were found to be the best. Inclusion of random parameters were not completely eliminated heterogenous variance and autocorrelation in residuals. Incorporating variance function  and  a  continuous  autoregressive  error  structure  (CAR(1))  to  NLME  Max  and  Burkhart model removed the heteroscedasticity and autocorrelation in residuals. Upper stem diameters were used to localized stem taper model to individual tree. For this, two different  measurement  scenarios  were  evaluated  as  one  and  two  upper  stem  diameter  measurements. Inclusion of random parameters were improved the predictive capability of taper model in particularly the middle and lower sections of stem based on upper stem diameter measurements. The calibration using upper stem diameter measurements can improve the tree-level accuracy of stem taper model is therefore recommended.CERNECERNE2020-11-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/2509CERNE; Vol 26 No 4 (2020); 464-473CERNE; Vol 26 No 4 (2020); 464-4732317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://cerne.ufla.br/site/index.php/CERNE/article/view/2509/1219Copyright (c) 2020 CERNEinfo:eu-repo/semantics/openAccessÖzçelik, RamazanAlkan, Onur2021-01-12T02:31:32Zoai:cerne.ufla.br:article/2509Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:54:45.395010Cerne (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
title FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
spellingShingle FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
Özçelik, Ramazan
stem taper
localization
prediction
variance function
random parameters
title_short FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
title_full FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
title_fullStr FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
title_full_unstemmed FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
title_sort FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE
author Özçelik, Ramazan
author_facet Özçelik, Ramazan
Alkan, Onur
author_role author
author2 Alkan, Onur
author2_role author
dc.contributor.author.fl_str_mv Özçelik, Ramazan
Alkan, Onur
dc.subject.por.fl_str_mv stem taper
localization
prediction
variance function
random parameters
topic stem taper
localization
prediction
variance function
random parameters
description Taper  models  are  one  of  several  necessary  tools  in  modern  forest  inventory,  giving  information  on  diameter  at  any  point  along  the  tree  stem  and  this  information  can  also  be used to estimate stem volume. In this study, we used nonlinear mixed-effects (NLME) modeling approach to minimize existing statistical problems in constructing taper equations. A segmented taper model of Max and Burkhart (1976) was fitted using this approach to consider  for  within-  and  between-tree  variation  in  brutian  pine  (Pinus  brutia  Ten.)  stem  taper. Based on evaluation statistics, the model including random-effects parameters β1, β3 and β4 were found to be the best. Inclusion of random parameters were not completely eliminated heterogenous variance and autocorrelation in residuals. Incorporating variance function  and  a  continuous  autoregressive  error  structure  (CAR(1))  to  NLME  Max  and  Burkhart model removed the heteroscedasticity and autocorrelation in residuals. Upper stem diameters were used to localized stem taper model to individual tree. For this, two different  measurement  scenarios  were  evaluated  as  one  and  two  upper  stem  diameter  measurements. Inclusion of random parameters were improved the predictive capability of taper model in particularly the middle and lower sections of stem based on upper stem diameter measurements. The calibration using upper stem diameter measurements can improve the tree-level accuracy of stem taper model is therefore recommended.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-23
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/2509
url https://cerne.ufla.br/site/index.php/CERNE/article/view/2509
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/2509/1219
dc.rights.driver.fl_str_mv Copyright (c) 2020 CERNE
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 CERNE
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CERNE
CERNE
publisher.none.fl_str_mv CERNE
CERNE
dc.source.none.fl_str_mv CERNE; Vol 26 No 4 (2020); 464-473
CERNE; Vol 26 No 4 (2020); 464-473
2317-6342
0104-7760
reponame:Cerne (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Cerne (Online)
collection Cerne (Online)
repository.name.fl_str_mv Cerne (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv cerne@dcf.ufla.br||cerne@dcf.ufla.br
_version_ 1799874944179372032