A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Cerne (Online) |
Texto Completo: | https://cerne.ufla.br/site/index.php/CERNE/article/view/404 |
Resumo: | This work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of the Brazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzed from January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot were analyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal component analysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis, Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presented more than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The cluster analysis was efficient in the separation of the groups of all tested species, as well as the method of the main components. |
id |
UFLA-3_a972ded58592f83e04cbc8815e74a331 |
---|---|
oai_identifier_str |
oai:cerne.ufla.br:article/404 |
network_acronym_str |
UFLA-3 |
network_name_str |
Cerne (Online) |
repository_id_str |
|
spelling |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDSCluster analysisprincipal component analysisstorageThis work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of the Brazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzed from January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot were analyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal component analysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis, Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presented more than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The cluster analysis was efficient in the separation of the groups of all tested species, as well as the method of the main components.CERNECERNE2015-09-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/404CERNE; Vol. 12 No. 1 (2006); 027-037CERNE; v. 12 n. 1 (2006); 027-0372317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://cerne.ufla.br/site/index.php/CERNE/article/view/404/345Copyright (c) 2015 CERNEinfo:eu-repo/semantics/openAccessLúcio, Alessandro Dal ColFortes, Fabiano de OliveiraStorck, LindolfoFilho, Alberto Cargnelutti2015-10-22T10:12:00Zoai:cerne.ufla.br:article/404Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-21T19:53:49.018659Cerne (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS |
title |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS |
spellingShingle |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS Lúcio, Alessandro Dal Col Cluster analysis principal component analysis storage |
title_short |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS |
title_full |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS |
title_fullStr |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS |
title_full_unstemmed |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS |
title_sort |
A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS |
author |
Lúcio, Alessandro Dal Col |
author_facet |
Lúcio, Alessandro Dal Col Fortes, Fabiano de Oliveira Storck, Lindolfo Filho, Alberto Cargnelutti |
author_role |
author |
author2 |
Fortes, Fabiano de Oliveira Storck, Lindolfo Filho, Alberto Cargnelutti |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Lúcio, Alessandro Dal Col Fortes, Fabiano de Oliveira Storck, Lindolfo Filho, Alberto Cargnelutti |
dc.subject.por.fl_str_mv |
Cluster analysis principal component analysis storage |
topic |
Cluster analysis principal component analysis storage |
description |
This work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of the Brazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzed from January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot were analyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal component analysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis, Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presented more than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The cluster analysis was efficient in the separation of the groups of all tested species, as well as the method of the main components. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-17 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/404 |
url |
https://cerne.ufla.br/site/index.php/CERNE/article/view/404 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://cerne.ufla.br/site/index.php/CERNE/article/view/404/345 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 CERNE info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 CERNE |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
CERNE CERNE |
publisher.none.fl_str_mv |
CERNE CERNE |
dc.source.none.fl_str_mv |
CERNE; Vol. 12 No. 1 (2006); 027-037 CERNE; v. 12 n. 1 (2006); 027-037 2317-6342 0104-7760 reponame:Cerne (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Cerne (Online) |
collection |
Cerne (Online) |
repository.name.fl_str_mv |
Cerne (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
cerne@dcf.ufla.br||cerne@dcf.ufla.br |
_version_ |
1799874940525084672 |