Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques

Detalhes bibliográficos
Autor(a) principal: Girolamo Neto, Cesare
Data de Publicação: 2014
Outros Autores: Rodrigues, Luiz Henrique Antunes, Meira, Carlos Alberto Alves
Tipo de documento: Artigo
Idioma: por
Título da fonte: Coffee Science (Online)
Texto Completo: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687
Resumo: Coffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load.
id UFLA-4_1c9c85d3a2ee8503689ab75c8f5d2bc5
oai_identifier_str oai:coffeescience.ufla.br:article/687
network_acronym_str UFLA-4
network_name_str Coffee Science (Online)
repository_id_str
spelling Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniquesModelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dadosPredictive modelsrandom forestsupport vector machinesartificial neural networksdecision treesAlerta de doençasflorestas aleatóriasmáquinas de vetores suporteredes neurais artificiaisárvores de decisãoCoffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load.A ferrugem é a principal doença do cafeeiro, podendo gerar perdas significativas na produção caso medidas de controle não sejam adotadas. Modelos de alerta de doenças agrícolas são capazes de gerar informações para aplicações de defensivos somente quando necessário, reduzindo gastos por parte do produtor e impactos ambientais. Este trabalho teve como objetivo desenvolver, comparar e selecionar modelos de alerta baseados em técnicas de mineração de dados para a predição da ferrugem do cafeeiro em anos de alta e baixa carga pendente de frutos. Foram utilizados dados obtidos em lavouras de café em produção ao longo de 13 anos (1998-2011). Vinte e três atributos foram considerados como variáveis independentes (preditoras) e, como variável dependente, a taxa de progresso mensal da ferrugem do cafeeiro, obtida a partir de dados de incidência da doença. Os atributos mais importantes do conjunto de dados foram filtrados por métodos de seleção de atributos e a modelagem foi realizada por meio de quatro técnicas de mineração de dados: máquinas de vetores suporte, redes neurais artificiais, árvores de decisão e florestas aleatórias. Para anos de alta e baixa carga pendente de frutos, as melhores taxas de acerto foram 85,3% e 88,9%, respectivamente. Outras medidas de desempenho como sensitividade e especificidade também apresentaram valores altos e equilibrados. Os modelos desenvolvidos neste trabalho fornecem melhores subsídios para o monitoramento da doença em anos de alta carga pendente de frutos do que outros modelos existentes, além de prover uma possibilidade de monitoramento em anos de baixa carga pendente de frutos. Editora UFLA2014-07-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/mswordapplication/mswordapplication/mswordapplication/mswordapplication/mswordapplication/mswordapplication/mswordapplication/mswordapplication/mswordapplication/mswordapplication/mswordapplication/mswordhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/687Coffee Science - ISSN 1984-3909; Vol. 9 No. 3 (2014); 408-418Coffee Science; Vol. 9 Núm. 3 (2014); 408-418Coffee Science; v. 9 n. 3 (2014); 408-4181984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/pdf_107https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1262https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1263https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1264https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1265https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1266https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1267https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1268https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1269https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1270https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1271https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1272https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1273Copyright (c) 2014 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessGirolamo Neto, CesareRodrigues, Luiz Henrique AntunesMeira, Carlos Alberto Alves2014-07-21T16:01:06Zoai:coffeescience.ufla.br:article/687Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:47.398365Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
title Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
spellingShingle Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
Girolamo Neto, Cesare
Predictive models
random forest
support vector machines
artificial neural networks
decision trees
Alerta de doenças
florestas aleatórias
máquinas de vetores suporte
redes neurais artificiais
árvores de decisão
title_short Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
title_full Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
title_fullStr Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
title_full_unstemmed Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
title_sort Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
author Girolamo Neto, Cesare
author_facet Girolamo Neto, Cesare
Rodrigues, Luiz Henrique Antunes
Meira, Carlos Alberto Alves
author_role author
author2 Rodrigues, Luiz Henrique Antunes
Meira, Carlos Alberto Alves
author2_role author
author
dc.contributor.author.fl_str_mv Girolamo Neto, Cesare
Rodrigues, Luiz Henrique Antunes
Meira, Carlos Alberto Alves
dc.subject.por.fl_str_mv Predictive models
random forest
support vector machines
artificial neural networks
decision trees
Alerta de doenças
florestas aleatórias
máquinas de vetores suporte
redes neurais artificiais
árvores de decisão
topic Predictive models
random forest
support vector machines
artificial neural networks
decision trees
Alerta de doenças
florestas aleatórias
máquinas de vetores suporte
redes neurais artificiais
árvores de decisão
description Coffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load.
publishDate 2014
dc.date.none.fl_str_mv 2014-07-16
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687
url https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/pdf_107
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1262
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1263
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1264
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1265
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1266
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1267
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1268
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1269
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1270
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1271
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1272
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/687/1273
dc.rights.driver.fl_str_mv Copyright (c) 2014 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2014 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/msword
application/msword
application/msword
application/msword
application/msword
application/msword
application/msword
application/msword
application/msword
application/msword
application/msword
application/msword
dc.publisher.none.fl_str_mv Editora UFLA
publisher.none.fl_str_mv Editora UFLA
dc.source.none.fl_str_mv Coffee Science - ISSN 1984-3909; Vol. 9 No. 3 (2014); 408-418
Coffee Science; Vol. 9 Núm. 3 (2014); 408-418
Coffee Science; v. 9 n. 3 (2014); 408-418
1984-3909
reponame:Coffee Science (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Coffee Science (Online)
collection Coffee Science (Online)
repository.name.fl_str_mv Coffee Science (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com
_version_ 1799874919753842688