Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687 http://repositorio.ufla.br/jspui/handle/1/13565 |
Resumo: | Coffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load. |
id |
UFLA_fac68bb71159c28de27b7e6e125e6fce |
---|---|
oai_identifier_str |
oai:localhost:1/13565 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dadosWarning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniquesPredictive modelsRandom forestSupport vector machinesArtificial neural networksDecision treesAlerta de doençasFlorestas aleatóriasMáquinas de vetores suporteRedes neurais artificiaisÁrvores de decisãoCoffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load.A ferrugem é a principal doença do cafeeiro, podendo gerar perdas significativas na produção caso medidas de controle não sejam adotadas. Modelos de alerta de doenças agrícolas são capazes de gerar informações para aplicações de defensivos somente quando necessário, reduzindo gastos por parte do produtor e impactos ambientais. Este trabalho teve como objetivo desenvolver, comparar e selecionar modelos de alerta baseados em técnicas de mineração de dados para a predição da ferrugem do cafeeiro em anos de alta e baixa carga pendente de frutos. Foram utilizados dados obtidos em lavouras de café em produção ao longo de 13 anos (1998-2011). Vinte e três atributos foram considerados como variáveis independentes (preditoras) e, como variável dependente, a taxa de progresso mensal da ferrugem do cafeeiro, obtida a partir de dados de incidência da doença. Os atributos mais importantes do conjunto de dados foram filtrados por métodos de seleção de atributos e a modelagem foi realizada por meio de quatro técnicas de mineração de dados: máquinas de vetores suporte, redes neurais artificiais, árvores de decisão e florestas aleatórias. Para anos de alta e baixa carga pendente de frutos, as melhores taxas de acerto foram 85,3% e 88,9%, respectivamente. Outras medidas de desempenho como sensitividade e especificidade também apresentaram valores altos e equilibrados. Os modelos desenvolvidos neste trabalho fornecem melhores subsídios para o monitoramento da doença em anos de alta carga pendente de frutos do que outros modelos existentes, além de prover uma possibilidade de monitoramento em anos de baixa carga pendente de frutos. Redes neurais artificiais2014-07-162017-08-01T20:06:04Z2017-08-01T20:06:04Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttp://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687http://repositorio.ufla.br/jspui/handle/1/13565Coffee Science; v. 9, n. 3 (2014); 408-418Coffee Science; v. 9, n. 3 (2014); 408-418Coffee Science; v. 9, n. 3 (2014); 408-4181984-39091809-6875reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttp://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687/pdf_107http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/621http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/622http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/623http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/624http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/625http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/626http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/627http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/628http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/629http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/630http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/631http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/632Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessGirolamo Neto, CesareRodrigues, Luiz Henrique AntunesMeira, Carlos Alberto AlvesGirolamo Neto, CesareRodrigues, Luiz Henrique AntunesMeira, Carlos Alberto Alves2021-02-11T19:13:38Zoai:localhost:1/13565Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-02-11T19:13:38Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques |
title |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados |
spellingShingle |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados Girolamo Neto, Cesare Predictive models Random forest Support vector machines Artificial neural networks Decision trees Alerta de doenças Florestas aleatórias Máquinas de vetores suporte Redes neurais artificiais Árvores de decisão |
title_short |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados |
title_full |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados |
title_fullStr |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados |
title_full_unstemmed |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados |
title_sort |
Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados |
author |
Girolamo Neto, Cesare |
author_facet |
Girolamo Neto, Cesare Rodrigues, Luiz Henrique Antunes Meira, Carlos Alberto Alves |
author_role |
author |
author2 |
Rodrigues, Luiz Henrique Antunes Meira, Carlos Alberto Alves |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Girolamo Neto, Cesare Rodrigues, Luiz Henrique Antunes Meira, Carlos Alberto Alves Girolamo Neto, Cesare Rodrigues, Luiz Henrique Antunes Meira, Carlos Alberto Alves |
dc.subject.por.fl_str_mv |
Predictive models Random forest Support vector machines Artificial neural networks Decision trees Alerta de doenças Florestas aleatórias Máquinas de vetores suporte Redes neurais artificiais Árvores de decisão |
topic |
Predictive models Random forest Support vector machines Artificial neural networks Decision trees Alerta de doenças Florestas aleatórias Máquinas de vetores suporte Redes neurais artificiais Árvores de decisão |
description |
Coffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07-16 2017-08-01T20:06:04Z 2017-08-01T20:06:04Z 2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687 http://repositorio.ufla.br/jspui/handle/1/13565 |
url |
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687 http://repositorio.ufla.br/jspui/handle/1/13565 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687/pdf_107 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/621 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/622 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/623 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/624 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/625 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/626 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/627 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/628 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/629 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/630 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/631 http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/632 |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
Coffee Science; v. 9, n. 3 (2014); 408-418 Coffee Science; v. 9, n. 3 (2014); 408-418 Coffee Science; v. 9, n. 3 (2014); 408-418 1984-3909 1809-6875 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439360828375040 |