Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados

Detalhes bibliográficos
Autor(a) principal: Girolamo Neto, Cesare
Data de Publicação: 2014
Outros Autores: Rodrigues, Luiz Henrique Antunes, Meira, Carlos Alberto Alves
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687
http://repositorio.ufla.br/jspui/handle/1/13565
Resumo: Coffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load.
id UFLA_fac68bb71159c28de27b7e6e125e6fce
oai_identifier_str oai:localhost:1/13565
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dadosWarning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniquesPredictive modelsRandom forestSupport vector machinesArtificial neural networksDecision treesAlerta de doençasFlorestas aleatóriasMáquinas de vetores suporteRedes neurais artificiaisÁrvores de decisãoCoffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load.A ferrugem é a principal doença do cafeeiro, podendo gerar perdas significativas na produção caso medidas de controle não sejam adotadas. Modelos de alerta de doenças agrícolas são capazes de gerar informações para aplicações de defensivos somente quando necessário, reduzindo gastos por parte do produtor e impactos ambientais. Este trabalho teve como objetivo desenvolver, comparar e selecionar modelos de alerta baseados em técnicas de mineração de dados para a predição da ferrugem do cafeeiro em anos de alta e baixa carga pendente de frutos. Foram utilizados dados obtidos em lavouras de café em produção ao longo de 13 anos (1998-2011). Vinte e três atributos foram considerados como variáveis independentes (preditoras) e, como variável dependente, a taxa de progresso mensal da ferrugem do cafeeiro, obtida a partir de dados de incidência da doença. Os atributos mais importantes do conjunto de dados foram filtrados por métodos de seleção de atributos e a modelagem foi realizada por meio de quatro técnicas de mineração de dados: máquinas de vetores suporte, redes neurais artificiais, árvores de decisão e florestas aleatórias. Para anos de alta e baixa carga pendente de frutos, as melhores taxas de acerto foram 85,3% e 88,9%, respectivamente. Outras medidas de desempenho como sensitividade e especificidade também apresentaram valores altos e equilibrados. Os modelos desenvolvidos neste trabalho fornecem melhores subsídios para o monitoramento da doença em anos de alta carga pendente de frutos do que outros modelos existentes, além de prover uma possibilidade de monitoramento em anos de baixa carga pendente de frutos. Redes neurais artificiais2014-07-162017-08-01T20:06:04Z2017-08-01T20:06:04Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttp://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687http://repositorio.ufla.br/jspui/handle/1/13565Coffee Science; v. 9, n. 3 (2014); 408-418Coffee Science; v. 9, n. 3 (2014); 408-418Coffee Science; v. 9, n. 3 (2014); 408-4181984-39091809-6875reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttp://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687/pdf_107http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/621http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/622http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/623http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/624http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/625http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/626http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/627http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/628http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/629http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/630http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/631http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/632Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessGirolamo Neto, CesareRodrigues, Luiz Henrique AntunesMeira, Carlos Alberto AlvesGirolamo Neto, CesareRodrigues, Luiz Henrique AntunesMeira, Carlos Alberto Alves2021-02-11T19:13:38Zoai:localhost:1/13565Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-02-11T19:13:38Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
Warning models for coffee rust (Hemileia vastatrix Berkeley & Broome) by data mining techniques
title Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
spellingShingle Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
Girolamo Neto, Cesare
Predictive models
Random forest
Support vector machines
Artificial neural networks
Decision trees
Alerta de doenças
Florestas aleatórias
Máquinas de vetores suporte
Redes neurais artificiais
Árvores de decisão
title_short Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
title_full Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
title_fullStr Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
title_full_unstemmed Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
title_sort Modelos de predição da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por técnicas de mineração de dados
author Girolamo Neto, Cesare
author_facet Girolamo Neto, Cesare
Rodrigues, Luiz Henrique Antunes
Meira, Carlos Alberto Alves
author_role author
author2 Rodrigues, Luiz Henrique Antunes
Meira, Carlos Alberto Alves
author2_role author
author
dc.contributor.author.fl_str_mv Girolamo Neto, Cesare
Rodrigues, Luiz Henrique Antunes
Meira, Carlos Alberto Alves
Girolamo Neto, Cesare
Rodrigues, Luiz Henrique Antunes
Meira, Carlos Alberto Alves
dc.subject.por.fl_str_mv Predictive models
Random forest
Support vector machines
Artificial neural networks
Decision trees
Alerta de doenças
Florestas aleatórias
Máquinas de vetores suporte
Redes neurais artificiais
Árvores de decisão
topic Predictive models
Random forest
Support vector machines
Artificial neural networks
Decision trees
Alerta de doenças
Florestas aleatórias
Máquinas de vetores suporte
Redes neurais artificiais
Árvores de decisão
description Coffee rust can cause severe yield losses if control measures are not taken. Warning models are capable of generating useful information regarding to the application of fungicides, decreasing economic losses and environmental impacts. The aim of this study was to develop, compare and select warning models developed by data mining techniques in order to predict the coffee rust in years of high and low fruit load. For 13 years (1998-2011), data was collected from an automatic weather station. The independent variables were 23, obtained from the weather station, and the dependent variable was the monthly progress rate for the coffee rust, which was generated by the values of disease incidence. The most important features were refined by feature selection techniques, and the modeling was performed using four data mining techniques: support vector machines, artificial neural networks, decision trees and random forests. For high fruit load years the best accuracy was 85.3% and for low fruit load years it was 88.9%. Other performance measures like recall and specificity also had high and balanced values. The warning models developed on this study provide further information for monitoring the disease on high fruit load years than other models previously developed, and also provide a possibility for the monitoring on years of low fruit load.
publishDate 2014
dc.date.none.fl_str_mv 2014-07-16
2017-08-01T20:06:04Z
2017-08-01T20:06:04Z
2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687
http://repositorio.ufla.br/jspui/handle/1/13565
url http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687
http://repositorio.ufla.br/jspui/handle/1/13565
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/687/pdf_107
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/621
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/622
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/623
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/624
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/625
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/626
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/627
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/628
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/629
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/630
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/631
http://www.coffeescience.ufla.br/index.php/Coffeescience/article/downloadSuppFile/687/632
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv Coffee Science; v. 9, n. 3 (2014); 408-418
Coffee Science; v. 9, n. 3 (2014); 408-418
Coffee Science; v. 9, n. 3 (2014); 408-418
1984-3909
1809-6875
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439360828375040