Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng por |
Título da fonte: | Coffee Science (Online) |
Texto Completo: | https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366 |
Resumo: | The survey of the progress of Cercospora leaf spot becomes potentially useful and understandable in understanding the disease process and in decision making for control measures. In the last years, computer programs have helped to elucidate what factors are biotic or abiotic more representative. The aim of this work was to investigate, using knowledge extraction techniques, which phenological and environmental attributes most influence on the occurrence of Cercospora leaf spot on coffee trees in southern Minas Gerais, under two tillage systems: conventional and organic. For this, data were organized incidence of Cercospora leaf spot in both cropping systems, with climatic data and phenological crop in a period of five years of evaluation. Then an algorithm based on knowledge extraction decision tree was used to obtain the attributes that most favor the occurrence of Cercospora leaf spot. The generated models were 60% hit rate and showed that the average temperature of the attribute was greater influence on the entire data and the conventional culture system. In organic management, the precipitation and phenology are the factors that most influence the occurrence of disease. |
id |
UFLA-4_3f93d4f325ba794dc5bf0d4730c9e707 |
---|---|
oai_identifier_str |
oai:coffeescience.ufla.br:article/366 |
network_acronym_str |
UFLA-4 |
network_name_str |
Coffee Science (Online) |
repository_id_str |
|
spelling |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas GeraisTécnicas de extração de conhecimentos aplicadas à modelagem de ocorrência da cercosporiose (Cercospora coffeicola Berkeley & Cooke) em cafeeiros na região sul de Minas GeraisCoffea arabica L.epidemiological data miningepidemiology of plant diseasesCoffea arabicamineração de dados epidemiológicosepidemiologia de doenças de plantasThe survey of the progress of Cercospora leaf spot becomes potentially useful and understandable in understanding the disease process and in decision making for control measures. In the last years, computer programs have helped to elucidate what factors are biotic or abiotic more representative. The aim of this work was to investigate, using knowledge extraction techniques, which phenological and environmental attributes most influence on the occurrence of Cercospora leaf spot on coffee trees in southern Minas Gerais, under two tillage systems: conventional and organic. For this, data were organized incidence of Cercospora leaf spot in both cropping systems, with climatic data and phenological crop in a period of five years of evaluation. Then an algorithm based on knowledge extraction decision tree was used to obtain the attributes that most favor the occurrence of Cercospora leaf spot. The generated models were 60% hit rate and showed that the average temperature of the attribute was greater influence on the entire data and the conventional culture system. In organic management, the precipitation and phenology are the factors that most influence the occurrence of disease.O levantamento do progresso da cercosporiose torna-se potencialmente útil e compreensível no entendimento da doença e no processo de tomada de decisão para medidas de controle. Nos últimos anos, programas computacionais têm ajudado a elucidar quais fatores bióticos ou abióticos são mais representativos. Objetivou-se, neste trabalho, investigar,utilizando técnicas de extração do conhecimento, quais atributos ambientais e fenológicos mais influenciam na ocorrência da cercosporiose em cafeeiros no Sul de Minas Gerais, sob dois sistemas de cultivo: convencional e orgânico. Para isso, foram organizados dados de incidência de cercosporiose nos dois sistemas de cultivo, com dados climáticos e fenológicos da cultura,em um período de cinco anos de avaliação. Em seguida, um algoritmo de extração do conhecimento baseado em árvore de decisão foi utilizado para obter os atributos que mais favorecem a ocorrência da cercosporiose. Os modelos gerados tiveram 60% de taxa de acerto e mostraram que a temperatura média foi o atributo de maior influência na totalidade dos dados e para o sistema convencional de cultivo. No manejo orgânico, a precipitação mensal e a fenologia são os fatores que mais interferem na ocorrência da doença.Editora UFLA2013-04-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfimage/pngimage/pngimage/pngimage/pngimage/jpegimage/jpegimage/pngimage/jpegimage/pnghttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/366Coffee Science - ISSN 1984-3909; Vol. 8 No. 1 (2013); 91-100Coffee Science; Vol. 8 Núm. 1 (2013); 91-100Coffee Science; v. 8 n. 1 (2013); 91-1001984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAengporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/pdf_117https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/pdfhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1054https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1055https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1056https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1057https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1058https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1059https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1060https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1061https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1062Copyright (c) 2013 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessSouza, Vanessa Cristina Oliveira deCunha, Rodrigo Luz daAndrade, Livia NaiaraVolpato, Margarete Marin LordeloCarvalho, Vicente Luiz deEsmin, Ahmed Ali Abdalla2014-08-25T17:56:25Zoai:coffeescience.ufla.br:article/366Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:39.018623Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais Técnicas de extração de conhecimentos aplicadas à modelagem de ocorrência da cercosporiose (Cercospora coffeicola Berkeley & Cooke) em cafeeiros na região sul de Minas Gerais |
title |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais |
spellingShingle |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais Souza, Vanessa Cristina Oliveira de Coffea arabica L. epidemiological data mining epidemiology of plant diseases Coffea arabica mineração de dados epidemiológicos epidemiologia de doenças de plantas |
title_short |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais |
title_full |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais |
title_fullStr |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais |
title_full_unstemmed |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais |
title_sort |
Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais |
author |
Souza, Vanessa Cristina Oliveira de |
author_facet |
Souza, Vanessa Cristina Oliveira de Cunha, Rodrigo Luz da Andrade, Livia Naiara Volpato, Margarete Marin Lordelo Carvalho, Vicente Luiz de Esmin, Ahmed Ali Abdalla |
author_role |
author |
author2 |
Cunha, Rodrigo Luz da Andrade, Livia Naiara Volpato, Margarete Marin Lordelo Carvalho, Vicente Luiz de Esmin, Ahmed Ali Abdalla |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Souza, Vanessa Cristina Oliveira de Cunha, Rodrigo Luz da Andrade, Livia Naiara Volpato, Margarete Marin Lordelo Carvalho, Vicente Luiz de Esmin, Ahmed Ali Abdalla |
dc.subject.por.fl_str_mv |
Coffea arabica L. epidemiological data mining epidemiology of plant diseases Coffea arabica mineração de dados epidemiológicos epidemiologia de doenças de plantas |
topic |
Coffea arabica L. epidemiological data mining epidemiology of plant diseases Coffea arabica mineração de dados epidemiológicos epidemiologia de doenças de plantas |
description |
The survey of the progress of Cercospora leaf spot becomes potentially useful and understandable in understanding the disease process and in decision making for control measures. In the last years, computer programs have helped to elucidate what factors are biotic or abiotic more representative. The aim of this work was to investigate, using knowledge extraction techniques, which phenological and environmental attributes most influence on the occurrence of Cercospora leaf spot on coffee trees in southern Minas Gerais, under two tillage systems: conventional and organic. For this, data were organized incidence of Cercospora leaf spot in both cropping systems, with climatic data and phenological crop in a period of five years of evaluation. Then an algorithm based on knowledge extraction decision tree was used to obtain the attributes that most favor the occurrence of Cercospora leaf spot. The generated models were 60% hit rate and showed that the average temperature of the attribute was greater influence on the entire data and the conventional culture system. In organic management, the precipitation and phenology are the factors that most influence the occurrence of disease. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04-21 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366 |
url |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366 |
dc.language.iso.fl_str_mv |
eng por |
language |
eng por |
dc.relation.none.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/pdf_117 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/pdf https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1054 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1055 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1056 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1057 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1058 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1059 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1060 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1061 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1062 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2013 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2013 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf image/png image/png image/png image/png image/jpeg image/jpeg image/png image/jpeg image/png |
dc.publisher.none.fl_str_mv |
Editora UFLA |
publisher.none.fl_str_mv |
Editora UFLA |
dc.source.none.fl_str_mv |
Coffee Science - ISSN 1984-3909; Vol. 8 No. 1 (2013); 91-100 Coffee Science; Vol. 8 Núm. 1 (2013); 91-100 Coffee Science; v. 8 n. 1 (2013); 91-100 1984-3909 reponame:Coffee Science (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Coffee Science (Online) |
collection |
Coffee Science (Online) |
repository.name.fl_str_mv |
Coffee Science (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com |
_version_ |
1799874919046053888 |