Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais

Detalhes bibliográficos
Autor(a) principal: Souza, Vanessa Cristina Oliveira de
Data de Publicação: 2013
Outros Autores: Cunha, Rodrigo Luz da, Andrade, Livia Naiara, Volpato, Margarete Marin Lordelo, Carvalho, Vicente Luiz de, Esmin, Ahmed Ali Abdalla
Tipo de documento: Artigo
Idioma: eng
por
Título da fonte: Coffee Science (Online)
Texto Completo: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366
Resumo: The survey of the progress of Cercospora leaf spot becomes potentially useful and understandable in understanding the disease process and in decision making for control measures. In the last years, computer programs have helped to elucidate what factors are biotic or abiotic more representative. The aim of this work was to investigate, using knowledge extraction techniques, which phenological and environmental attributes most influence on the occurrence of Cercospora leaf spot on coffee trees in southern Minas Gerais, under two tillage systems: conventional and organic. For this, data were organized incidence of Cercospora leaf spot in both cropping systems, with climatic data and phenological crop in a period of five years of evaluation. Then an algorithm based on knowledge extraction decision tree was used to obtain the attributes that most favor the occurrence of Cercospora leaf spot. The generated models were 60% hit rate and showed that the average temperature of the attribute was greater influence on the entire data and the conventional culture system. In organic management, the precipitation and phenology are the factors that most influence the occurrence of disease.
id UFLA-4_3f93d4f325ba794dc5bf0d4730c9e707
oai_identifier_str oai:coffeescience.ufla.br:article/366
network_acronym_str UFLA-4
network_name_str Coffee Science (Online)
repository_id_str
spelling Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas GeraisTécnicas de extração de conhecimentos aplicadas à modelagem de ocorrência da cercosporiose (Cercospora coffeicola Berkeley & Cooke) em cafeeiros na região sul de Minas GeraisCoffea arabica L.epidemiological data miningepidemiology of plant diseasesCoffea arabicamineração de dados epidemiológicosepidemiologia de doenças de plantasThe survey of the progress of Cercospora leaf spot becomes potentially useful and understandable in understanding the disease process and in decision making for control measures. In the last years, computer programs have helped to elucidate what factors are biotic or abiotic more representative. The aim of this work was to investigate, using knowledge extraction techniques, which phenological and environmental attributes most influence on the occurrence of Cercospora leaf spot on coffee trees in southern Minas Gerais, under two tillage systems: conventional and organic. For this, data were organized incidence of Cercospora leaf spot in both cropping systems, with climatic data and phenological crop in a period of five years of evaluation. Then an algorithm based on knowledge extraction decision tree was used to obtain the attributes that most favor the occurrence of Cercospora leaf spot. The generated models were 60% hit rate and showed that the average temperature of the attribute was greater influence on the entire data and the conventional culture system. In organic management, the precipitation and phenology are the factors that most influence the occurrence of disease.O levantamento do progresso da cercosporiose torna-se potencialmente útil e compreensível no entendimento da doença e no processo de tomada de decisão para medidas de controle. Nos últimos anos, programas computacionais têm ajudado a elucidar quais fatores bióticos ou abióticos são mais representativos. Objetivou-se, neste trabalho, investigar,utilizando técnicas de extração do conhecimento, quais atributos ambientais e fenológicos mais influenciam na ocorrência da cercosporiose em cafeeiros no Sul de Minas Gerais, sob dois sistemas de cultivo: convencional e orgânico. Para isso, foram organizados dados de incidência de cercosporiose nos dois sistemas de cultivo, com dados climáticos e fenológicos da cultura,em um período de cinco anos de avaliação. Em seguida, um algoritmo de extração do conhecimento baseado em árvore de decisão foi utilizado para obter os atributos que mais favorecem a ocorrência da cercosporiose. Os modelos gerados tiveram 60% de taxa de acerto e mostraram que a temperatura média foi o atributo de maior influência na totalidade dos dados e para o sistema convencional de cultivo. No manejo orgânico, a precipitação mensal e a fenologia são os fatores que mais interferem na ocorrência da doença.Editora UFLA2013-04-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfimage/pngimage/pngimage/pngimage/pngimage/jpegimage/jpegimage/pngimage/jpegimage/pnghttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/366Coffee Science - ISSN 1984-3909; Vol. 8 No. 1 (2013); 91-100Coffee Science; Vol. 8 Núm. 1 (2013); 91-100Coffee Science; v. 8 n. 1 (2013); 91-1001984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAengporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/pdf_117https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/pdfhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1054https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1055https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1056https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1057https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1058https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1059https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1060https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1061https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1062Copyright (c) 2013 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessSouza, Vanessa Cristina Oliveira deCunha, Rodrigo Luz daAndrade, Livia NaiaraVolpato, Margarete Marin LordeloCarvalho, Vicente Luiz deEsmin, Ahmed Ali Abdalla2014-08-25T17:56:25Zoai:coffeescience.ufla.br:article/366Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:39.018623Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
Técnicas de extração de conhecimentos aplicadas à modelagem de ocorrência da cercosporiose (Cercospora coffeicola Berkeley & Cooke) em cafeeiros na região sul de Minas Gerais
title Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
spellingShingle Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
Souza, Vanessa Cristina Oliveira de
Coffea arabica L.
epidemiological data mining
epidemiology of plant diseases
Coffea arabica
mineração de dados epidemiológicos
epidemiologia de doenças de plantas
title_short Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
title_full Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
title_fullStr Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
title_full_unstemmed Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
title_sort Technical knowledge extraction applied to modeling of occurrence (Cercospora coffeicola Berkeley & Cooke) coffee in the southern region of Minas Gerais
author Souza, Vanessa Cristina Oliveira de
author_facet Souza, Vanessa Cristina Oliveira de
Cunha, Rodrigo Luz da
Andrade, Livia Naiara
Volpato, Margarete Marin Lordelo
Carvalho, Vicente Luiz de
Esmin, Ahmed Ali Abdalla
author_role author
author2 Cunha, Rodrigo Luz da
Andrade, Livia Naiara
Volpato, Margarete Marin Lordelo
Carvalho, Vicente Luiz de
Esmin, Ahmed Ali Abdalla
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Souza, Vanessa Cristina Oliveira de
Cunha, Rodrigo Luz da
Andrade, Livia Naiara
Volpato, Margarete Marin Lordelo
Carvalho, Vicente Luiz de
Esmin, Ahmed Ali Abdalla
dc.subject.por.fl_str_mv Coffea arabica L.
epidemiological data mining
epidemiology of plant diseases
Coffea arabica
mineração de dados epidemiológicos
epidemiologia de doenças de plantas
topic Coffea arabica L.
epidemiological data mining
epidemiology of plant diseases
Coffea arabica
mineração de dados epidemiológicos
epidemiologia de doenças de plantas
description The survey of the progress of Cercospora leaf spot becomes potentially useful and understandable in understanding the disease process and in decision making for control measures. In the last years, computer programs have helped to elucidate what factors are biotic or abiotic more representative. The aim of this work was to investigate, using knowledge extraction techniques, which phenological and environmental attributes most influence on the occurrence of Cercospora leaf spot on coffee trees in southern Minas Gerais, under two tillage systems: conventional and organic. For this, data were organized incidence of Cercospora leaf spot in both cropping systems, with climatic data and phenological crop in a period of five years of evaluation. Then an algorithm based on knowledge extraction decision tree was used to obtain the attributes that most favor the occurrence of Cercospora leaf spot. The generated models were 60% hit rate and showed that the average temperature of the attribute was greater influence on the entire data and the conventional culture system. In organic management, the precipitation and phenology are the factors that most influence the occurrence of disease.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366
url https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366
dc.language.iso.fl_str_mv eng
por
language eng
por
dc.relation.none.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/pdf_117
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/pdf
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1054
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1055
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1056
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1057
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1058
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1059
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1060
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1061
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/366/1062
dc.rights.driver.fl_str_mv Copyright (c) 2013 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2013 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
image/png
image/png
image/png
image/png
image/jpeg
image/jpeg
image/png
image/jpeg
image/png
dc.publisher.none.fl_str_mv Editora UFLA
publisher.none.fl_str_mv Editora UFLA
dc.source.none.fl_str_mv Coffee Science - ISSN 1984-3909; Vol. 8 No. 1 (2013); 91-100
Coffee Science; Vol. 8 Núm. 1 (2013); 91-100
Coffee Science; v. 8 n. 1 (2013); 91-100
1984-3909
reponame:Coffee Science (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Coffee Science (Online)
collection Coffee Science (Online)
repository.name.fl_str_mv Coffee Science (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com
_version_ 1799874919046053888