Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor

Detalhes bibliográficos
Autor(a) principal: Marujo, Rennan de Freitas Bezerra
Data de Publicação: 2017
Outros Autores: Moreira, Maurício Alves, Volpato, Margarete Marin Lordelo, Alves, Helena Maria Ramos
Tipo de documento: Artigo
Idioma: por
Título da fonte: Coffee Science (Online)
Texto Completo: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176
Resumo: Coffee, an important product in Brazilian exports, needs constant monitoring, so that systems and forecasting of existing crops can be reliable. Orbital imagery of medium spatial resolution are tools with great potential for land use mapping and identification of agricultural crops. This research evaluated the performance of the object based classification, applied in OLI/Landsat-8 images, with the purpose of mapping of coffee crops. Three analyzes were made, the first one using exclusively spectral attribute, the second one including textural attributes and the third also considering illumination classes. Six OLI/Landsat-8 multispectral images were used, representing three different coffee phenological stages: fructification, graining and rest. The validation of the classifications was performed by the Monte Carlo method using reference images obtained by visual interpretation. The classification using exclusively spectral attributes resulted an accuracy of 57% for coffee class. There was no phenological stage that provided greater accuracy to the coffee class in the automatic classification of OLI/Landsat-8 images. The results demonstrate that texture is important for coffee detection, thus visual interpretation remains an important step to minimize classification errors.
id UFLA-4_d4014a00be8c9d44cee9de227df6bd0b
oai_identifier_str oai:coffeescience.ufla.br:article/1176
network_acronym_str UFLA-4
network_name_str Coffee Science (Online)
repository_id_str
spelling Coffee crop detection by automatic classification using spectral and textural attributes and illumination factorMapeamento da cultura cafeeira por meio de classificação automática utilizando atributos espectrais, texturais e fator de iluminaçãoRemote sensingSRTMLandsat-8Sensoriamento remotoSRTMLandsat-8Coffee, an important product in Brazilian exports, needs constant monitoring, so that systems and forecasting of existing crops can be reliable. Orbital imagery of medium spatial resolution are tools with great potential for land use mapping and identification of agricultural crops. This research evaluated the performance of the object based classification, applied in OLI/Landsat-8 images, with the purpose of mapping of coffee crops. Three analyzes were made, the first one using exclusively spectral attribute, the second one including textural attributes and the third also considering illumination classes. Six OLI/Landsat-8 multispectral images were used, representing three different coffee phenological stages: fructification, graining and rest. The validation of the classifications was performed by the Monte Carlo method using reference images obtained by visual interpretation. The classification using exclusively spectral attributes resulted an accuracy of 57% for coffee class. There was no phenological stage that provided greater accuracy to the coffee class in the automatic classification of OLI/Landsat-8 images. The results demonstrate that texture is important for coffee detection, thus visual interpretation remains an important step to minimize classification errors.O café, importante produto nas exportações brasileiras, necessita de constante monitoramento para que os sistemas de previsão de safras existentes sejam confiáveis. Imagens orbitais de média resolução espacial são ferramentas com grande potencial para mapeamento do uso do solo e identificação de culturas agrícolas. Nesta pesquisa, visando o mapeamento de áreas cafeeiras, avaliou-se o desempenho da classificação baseada em objetos, associada a técnicas de mineração de dados, aplicada em imagens OLI/Landsat-8. Foram feitas três classificações automáticas, a primeira constando exclusivamente atributos espectrais, a segunda acrescentando atributos texturais e a terceira, incluindo também classes de iluminação do terreno. Foram utilizadas seis imagens multiespectrais, datadas de três diferentes estádios fenológicos da cultura: frutificação, granação e repouso. A validação das classificações foi feita por meio do Método de Monte Carlo utilizando como referência mapas visualmente interpretados. As classificações feitas exclusivamente com atributos espectrais resultaram, para a classe café, exatidão média de 57%. Não houve estádio fenológico que proporcionasse maior exatidão à classe café, entretanto ao incluir os atributos texturais, a exatidão da classe café melhorou para 76%. Assim, observa-se que atributos texturais mostraram-se importantes para detecção automática de áreas cafeeiras.Editora UFLA2017-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documenthttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176Coffee Science - ISSN 1984-3909; Vol. 12 No. 2 (2017); 164-175Coffee Science; Vol. 12 Núm. 2 (2017); 164-175Coffee Science; v. 12 n. 2 (2017); 164-1751984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176/pdf_1176_3https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176/1655Copyright (c) 2017 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessMarujo, Rennan de Freitas BezerraMoreira, Maurício AlvesVolpato, Margarete Marin LordeloAlves, Helena Maria Ramos2017-06-06T13:59:45Zoai:coffeescience.ufla.br:article/1176Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:58.729088Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
Mapeamento da cultura cafeeira por meio de classificação automática utilizando atributos espectrais, texturais e fator de iluminação
title Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
spellingShingle Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
Marujo, Rennan de Freitas Bezerra
Remote sensing
SRTM
Landsat-8
Sensoriamento remoto
SRTM
Landsat-8
title_short Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
title_full Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
title_fullStr Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
title_full_unstemmed Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
title_sort Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
author Marujo, Rennan de Freitas Bezerra
author_facet Marujo, Rennan de Freitas Bezerra
Moreira, Maurício Alves
Volpato, Margarete Marin Lordelo
Alves, Helena Maria Ramos
author_role author
author2 Moreira, Maurício Alves
Volpato, Margarete Marin Lordelo
Alves, Helena Maria Ramos
author2_role author
author
author
dc.contributor.author.fl_str_mv Marujo, Rennan de Freitas Bezerra
Moreira, Maurício Alves
Volpato, Margarete Marin Lordelo
Alves, Helena Maria Ramos
dc.subject.por.fl_str_mv Remote sensing
SRTM
Landsat-8
Sensoriamento remoto
SRTM
Landsat-8
topic Remote sensing
SRTM
Landsat-8
Sensoriamento remoto
SRTM
Landsat-8
description Coffee, an important product in Brazilian exports, needs constant monitoring, so that systems and forecasting of existing crops can be reliable. Orbital imagery of medium spatial resolution are tools with great potential for land use mapping and identification of agricultural crops. This research evaluated the performance of the object based classification, applied in OLI/Landsat-8 images, with the purpose of mapping of coffee crops. Three analyzes were made, the first one using exclusively spectral attribute, the second one including textural attributes and the third also considering illumination classes. Six OLI/Landsat-8 multispectral images were used, representing three different coffee phenological stages: fructification, graining and rest. The validation of the classifications was performed by the Monte Carlo method using reference images obtained by visual interpretation. The classification using exclusively spectral attributes resulted an accuracy of 57% for coffee class. There was no phenological stage that provided greater accuracy to the coffee class in the automatic classification of OLI/Landsat-8 images. The results demonstrate that texture is important for coffee detection, thus visual interpretation remains an important step to minimize classification errors.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-04
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176
url https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176/pdf_1176_3
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176/1655
dc.rights.driver.fl_str_mv Copyright (c) 2017 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Coffee Science - ISSN 1984-3909
https://creativecommons.org/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/vnd.openxmlformats-officedocument.wordprocessingml.document
dc.publisher.none.fl_str_mv Editora UFLA
publisher.none.fl_str_mv Editora UFLA
dc.source.none.fl_str_mv Coffee Science - ISSN 1984-3909; Vol. 12 No. 2 (2017); 164-175
Coffee Science; Vol. 12 Núm. 2 (2017); 164-175
Coffee Science; v. 12 n. 2 (2017); 164-175
1984-3909
reponame:Coffee Science (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Coffee Science (Online)
collection Coffee Science (Online)
repository.name.fl_str_mv Coffee Science (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com
_version_ 1825947731476086784