Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Coffee Science (Online) |
Texto Completo: | https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176 |
Resumo: | Coffee, an important product in Brazilian exports, needs constant monitoring, so that systems and forecasting of existing crops can be reliable. Orbital imagery of medium spatial resolution are tools with great potential for land use mapping and identification of agricultural crops. This research evaluated the performance of the object based classification, applied in OLI/Landsat-8 images, with the purpose of mapping of coffee crops. Three analyzes were made, the first one using exclusively spectral attribute, the second one including textural attributes and the third also considering illumination classes. Six OLI/Landsat-8 multispectral images were used, representing three different coffee phenological stages: fructification, graining and rest. The validation of the classifications was performed by the Monte Carlo method using reference images obtained by visual interpretation. The classification using exclusively spectral attributes resulted an accuracy of 57% for coffee class. There was no phenological stage that provided greater accuracy to the coffee class in the automatic classification of OLI/Landsat-8 images. The results demonstrate that texture is important for coffee detection, thus visual interpretation remains an important step to minimize classification errors. |
id |
UFLA-4_d4014a00be8c9d44cee9de227df6bd0b |
---|---|
oai_identifier_str |
oai:coffeescience.ufla.br:article/1176 |
network_acronym_str |
UFLA-4 |
network_name_str |
Coffee Science (Online) |
repository_id_str |
|
spelling |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factorMapeamento da cultura cafeeira por meio de classificação automática utilizando atributos espectrais, texturais e fator de iluminaçãoRemote sensingSRTMLandsat-8Sensoriamento remotoSRTMLandsat-8Coffee, an important product in Brazilian exports, needs constant monitoring, so that systems and forecasting of existing crops can be reliable. Orbital imagery of medium spatial resolution are tools with great potential for land use mapping and identification of agricultural crops. This research evaluated the performance of the object based classification, applied in OLI/Landsat-8 images, with the purpose of mapping of coffee crops. Three analyzes were made, the first one using exclusively spectral attribute, the second one including textural attributes and the third also considering illumination classes. Six OLI/Landsat-8 multispectral images were used, representing three different coffee phenological stages: fructification, graining and rest. The validation of the classifications was performed by the Monte Carlo method using reference images obtained by visual interpretation. The classification using exclusively spectral attributes resulted an accuracy of 57% for coffee class. There was no phenological stage that provided greater accuracy to the coffee class in the automatic classification of OLI/Landsat-8 images. The results demonstrate that texture is important for coffee detection, thus visual interpretation remains an important step to minimize classification errors.O café, importante produto nas exportações brasileiras, necessita de constante monitoramento para que os sistemas de previsão de safras existentes sejam confiáveis. Imagens orbitais de média resolução espacial são ferramentas com grande potencial para mapeamento do uso do solo e identificação de culturas agrícolas. Nesta pesquisa, visando o mapeamento de áreas cafeeiras, avaliou-se o desempenho da classificação baseada em objetos, associada a técnicas de mineração de dados, aplicada em imagens OLI/Landsat-8. Foram feitas três classificações automáticas, a primeira constando exclusivamente atributos espectrais, a segunda acrescentando atributos texturais e a terceira, incluindo também classes de iluminação do terreno. Foram utilizadas seis imagens multiespectrais, datadas de três diferentes estádios fenológicos da cultura: frutificação, granação e repouso. A validação das classificações foi feita por meio do Método de Monte Carlo utilizando como referência mapas visualmente interpretados. As classificações feitas exclusivamente com atributos espectrais resultaram, para a classe café, exatidão média de 57%. Não houve estádio fenológico que proporcionasse maior exatidão à classe café, entretanto ao incluir os atributos texturais, a exatidão da classe café melhorou para 76%. Assim, observa-se que atributos texturais mostraram-se importantes para detecção automática de áreas cafeeiras.Editora UFLA2017-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documenthttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176Coffee Science - ISSN 1984-3909; Vol. 12 No. 2 (2017); 164-175Coffee Science; Vol. 12 Núm. 2 (2017); 164-175Coffee Science; v. 12 n. 2 (2017); 164-1751984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176/pdf_1176_3https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176/1655Copyright (c) 2017 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessMarujo, Rennan de Freitas BezerraMoreira, Maurício AlvesVolpato, Margarete Marin LordeloAlves, Helena Maria Ramos2017-06-06T13:59:45Zoai:coffeescience.ufla.br:article/1176Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:58.729088Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor Mapeamento da cultura cafeeira por meio de classificação automática utilizando atributos espectrais, texturais e fator de iluminação |
title |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor |
spellingShingle |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor Marujo, Rennan de Freitas Bezerra Remote sensing SRTM Landsat-8 Sensoriamento remoto SRTM Landsat-8 |
title_short |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor |
title_full |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor |
title_fullStr |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor |
title_full_unstemmed |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor |
title_sort |
Coffee crop detection by automatic classification using spectral and textural attributes and illumination factor |
author |
Marujo, Rennan de Freitas Bezerra |
author_facet |
Marujo, Rennan de Freitas Bezerra Moreira, Maurício Alves Volpato, Margarete Marin Lordelo Alves, Helena Maria Ramos |
author_role |
author |
author2 |
Moreira, Maurício Alves Volpato, Margarete Marin Lordelo Alves, Helena Maria Ramos |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Marujo, Rennan de Freitas Bezerra Moreira, Maurício Alves Volpato, Margarete Marin Lordelo Alves, Helena Maria Ramos |
dc.subject.por.fl_str_mv |
Remote sensing SRTM Landsat-8 Sensoriamento remoto SRTM Landsat-8 |
topic |
Remote sensing SRTM Landsat-8 Sensoriamento remoto SRTM Landsat-8 |
description |
Coffee, an important product in Brazilian exports, needs constant monitoring, so that systems and forecasting of existing crops can be reliable. Orbital imagery of medium spatial resolution are tools with great potential for land use mapping and identification of agricultural crops. This research evaluated the performance of the object based classification, applied in OLI/Landsat-8 images, with the purpose of mapping of coffee crops. Three analyzes were made, the first one using exclusively spectral attribute, the second one including textural attributes and the third also considering illumination classes. Six OLI/Landsat-8 multispectral images were used, representing three different coffee phenological stages: fructification, graining and rest. The validation of the classifications was performed by the Monte Carlo method using reference images obtained by visual interpretation. The classification using exclusively spectral attributes resulted an accuracy of 57% for coffee class. There was no phenological stage that provided greater accuracy to the coffee class in the automatic classification of OLI/Landsat-8 images. The results demonstrate that texture is important for coffee detection, thus visual interpretation remains an important step to minimize classification errors. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-04 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176 |
url |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176/pdf_1176_3 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1176/1655 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/vnd.openxmlformats-officedocument.wordprocessingml.document |
dc.publisher.none.fl_str_mv |
Editora UFLA |
publisher.none.fl_str_mv |
Editora UFLA |
dc.source.none.fl_str_mv |
Coffee Science - ISSN 1984-3909; Vol. 12 No. 2 (2017); 164-175 Coffee Science; Vol. 12 Núm. 2 (2017); 164-175 Coffee Science; v. 12 n. 2 (2017); 164-175 1984-3909 reponame:Coffee Science (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Coffee Science (Online) |
collection |
Coffee Science (Online) |
repository.name.fl_str_mv |
Coffee Science (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com |
_version_ |
1825947731476086784 |