Algorithms for Finding Generalized Coloring of Trees
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | INFOCOMP: Jornal de Ciência da Computação |
Texto Completo: | https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326 |
Resumo: | Let � be a positive integer, and � be a graph with nonnegative integer weights on edges. Then a generalized vertex-coloring, called an �-vertex-coloring of �, is an assignment of colors to the vertices in such a way that any two vertices � and � get different colors if the distance between � and � in � is at most �. A coloring is optimal if it usesminimumnumber of distinct colors. The �-vertex-coloring problem is to find an optimal �-vertex-coloring of a graph �. In this paper we present an ���� � ������ time algorithm to find an �-vertex-coloring of a tree � , where � is the maximum degree of � . The algorithm takes ����� time if both � and � are bounded integers. We compute the upper bound of colors to be � � ������������� ����� . We also present an ���� � ������ time algorithm for solving the �-edge-coloring problem of trees. If both � and � are bounded integers, this algorithm also takes ����� time. |
id |
UFLA-5_4b4502dbda05697f007cc9296d72f1bc |
---|---|
oai_identifier_str |
oai:infocomp.dcc.ufla.br:article/326 |
network_acronym_str |
UFLA-5 |
network_name_str |
INFOCOMP: Jornal de Ciência da Computação |
repository_id_str |
|
spelling |
Algorithms for Finding Generalized Coloring of TreesAlgorithmChordal Gra phl-chromatic-numberl-edge-coloringl-vertex-coloringGraphTreeLet � be a positive integer, and � be a graph with nonnegative integer weights on edges. Then a generalized vertex-coloring, called an �-vertex-coloring of �, is an assignment of colors to the vertices in such a way that any two vertices � and � get different colors if the distance between � and � in � is at most �. A coloring is optimal if it usesminimumnumber of distinct colors. The �-vertex-coloring problem is to find an optimal �-vertex-coloring of a graph �. In this paper we present an ���� � ������ time algorithm to find an �-vertex-coloring of a tree � , where � is the maximum degree of � . The algorithm takes ����� time if both � and � are bounded integers. We compute the upper bound of colors to be � � ������������� ����� . We also present an ���� � ������ time algorithm for solving the �-edge-coloring problem of trees. If both � and � are bounded integers, this algorithm also takes ����� time.Editora da UFLA2011-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326INFOCOMP Journal of Computer Science; Vol. 10 No. 1 (2011): March, 2011; 36-441982-33631807-4545reponame:INFOCOMP: Jornal de Ciência da Computaçãoinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326/310Copyright (c) 2016 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessAwal, TanveerMahbubuzzaman, M.Kashem, MD. Abul2015-07-29T11:52:48Zoai:infocomp.dcc.ufla.br:article/326Revistahttps://infocomp.dcc.ufla.br/index.php/infocompPUBhttps://infocomp.dcc.ufla.br/index.php/infocomp/oaiinfocomp@dcc.ufla.br||apfreire@dcc.ufla.br1982-33631807-4545opendoar:2024-05-21T19:54:32.145561INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Algorithms for Finding Generalized Coloring of Trees |
title |
Algorithms for Finding Generalized Coloring of Trees |
spellingShingle |
Algorithms for Finding Generalized Coloring of Trees Awal, Tanveer Algorithm Chordal Gra ph l-chromatic-number l-edge-coloring l-vertex-coloring Graph Tree |
title_short |
Algorithms for Finding Generalized Coloring of Trees |
title_full |
Algorithms for Finding Generalized Coloring of Trees |
title_fullStr |
Algorithms for Finding Generalized Coloring of Trees |
title_full_unstemmed |
Algorithms for Finding Generalized Coloring of Trees |
title_sort |
Algorithms for Finding Generalized Coloring of Trees |
author |
Awal, Tanveer |
author_facet |
Awal, Tanveer Mahbubuzzaman, M. Kashem, MD. Abul |
author_role |
author |
author2 |
Mahbubuzzaman, M. Kashem, MD. Abul |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Awal, Tanveer Mahbubuzzaman, M. Kashem, MD. Abul |
dc.subject.por.fl_str_mv |
Algorithm Chordal Gra ph l-chromatic-number l-edge-coloring l-vertex-coloring Graph Tree |
topic |
Algorithm Chordal Gra ph l-chromatic-number l-edge-coloring l-vertex-coloring Graph Tree |
description |
Let � be a positive integer, and � be a graph with nonnegative integer weights on edges. Then a generalized vertex-coloring, called an �-vertex-coloring of �, is an assignment of colors to the vertices in such a way that any two vertices � and � get different colors if the distance between � and � in � is at most �. A coloring is optimal if it usesminimumnumber of distinct colors. The �-vertex-coloring problem is to find an optimal �-vertex-coloring of a graph �. In this paper we present an ���� � ������ time algorithm to find an �-vertex-coloring of a tree � , where � is the maximum degree of � . The algorithm takes ����� time if both � and � are bounded integers. We compute the upper bound of colors to be � � ������������� ����� . We also present an ���� � ������ time algorithm for solving the �-edge-coloring problem of trees. If both � and � are bounded integers, this algorithm also takes ����� time. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326 |
url |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326/310 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
INFOCOMP Journal of Computer Science; Vol. 10 No. 1 (2011): March, 2011; 36-44 1982-3363 1807-4545 reponame:INFOCOMP: Jornal de Ciência da Computação instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
INFOCOMP: Jornal de Ciência da Computação |
collection |
INFOCOMP: Jornal de Ciência da Computação |
repository.name.fl_str_mv |
INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
infocomp@dcc.ufla.br||apfreire@dcc.ufla.br |
_version_ |
1799874741369044992 |