Algorithms for Finding Generalized Coloring of Trees

Detalhes bibliográficos
Autor(a) principal: Awal, Tanveer
Data de Publicação: 2011
Outros Autores: Mahbubuzzaman, M., Kashem, MD. Abul
Tipo de documento: Artigo
Idioma: eng
Título da fonte: INFOCOMP: Jornal de Ciência da Computação
Texto Completo: https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326
Resumo: Let � be a positive integer, and � be a graph with nonnegative integer weights on edges. Then a generalized vertex-coloring, called an �-vertex-coloring of �, is an assignment of colors to the vertices in such a way that any two vertices � and � get different colors if the distance between � and � in � is at most �. A coloring is optimal if it usesminimumnumber of distinct colors. The �-vertex-coloring problem is to find an optimal �-vertex-coloring of a graph �. In this paper we present an ���� � ������ time algorithm to find an �-vertex-coloring of a tree � , where � is the maximum degree of � . The algorithm takes ����� time if both � and � are bounded integers. We compute the upper bound of colors to be � � ������������� ����� . We also present an ���� � ������ time algorithm for solving the �-edge-coloring problem of trees. If both � and � are bounded integers, this algorithm also takes ����� time.
id UFLA-5_4b4502dbda05697f007cc9296d72f1bc
oai_identifier_str oai:infocomp.dcc.ufla.br:article/326
network_acronym_str UFLA-5
network_name_str INFOCOMP: Jornal de Ciência da Computação
repository_id_str
spelling Algorithms for Finding Generalized Coloring of TreesAlgorithmChordal Gra phl-chromatic-numberl-edge-coloringl-vertex-coloringGraphTreeLet � be a positive integer, and � be a graph with nonnegative integer weights on edges. Then a generalized vertex-coloring, called an �-vertex-coloring of �, is an assignment of colors to the vertices in such a way that any two vertices � and � get different colors if the distance between � and � in � is at most �. A coloring is optimal if it usesminimumnumber of distinct colors. The �-vertex-coloring problem is to find an optimal �-vertex-coloring of a graph �. In this paper we present an ���� � ������ time algorithm to find an �-vertex-coloring of a tree � , where � is the maximum degree of � . The algorithm takes ����� time if both � and � are bounded integers. We compute the upper bound of colors to be � � ������������� ����� . We also present an ���� � ������ time algorithm for solving the �-edge-coloring problem of trees. If both � and � are bounded integers, this algorithm also takes ����� time.Editora da UFLA2011-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326INFOCOMP Journal of Computer Science; Vol. 10 No. 1 (2011): March, 2011; 36-441982-33631807-4545reponame:INFOCOMP: Jornal de Ciência da Computaçãoinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326/310Copyright (c) 2016 INFOCOMP Journal of Computer Scienceinfo:eu-repo/semantics/openAccessAwal, TanveerMahbubuzzaman, M.Kashem, MD. Abul2015-07-29T11:52:48Zoai:infocomp.dcc.ufla.br:article/326Revistahttps://infocomp.dcc.ufla.br/index.php/infocompPUBhttps://infocomp.dcc.ufla.br/index.php/infocomp/oaiinfocomp@dcc.ufla.br||apfreire@dcc.ufla.br1982-33631807-4545opendoar:2024-05-21T19:54:32.145561INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Algorithms for Finding Generalized Coloring of Trees
title Algorithms for Finding Generalized Coloring of Trees
spellingShingle Algorithms for Finding Generalized Coloring of Trees
Awal, Tanveer
Algorithm
Chordal Gra ph
l-chromatic-number
l-edge-coloring
l-vertex-coloring
Graph
Tree
title_short Algorithms for Finding Generalized Coloring of Trees
title_full Algorithms for Finding Generalized Coloring of Trees
title_fullStr Algorithms for Finding Generalized Coloring of Trees
title_full_unstemmed Algorithms for Finding Generalized Coloring of Trees
title_sort Algorithms for Finding Generalized Coloring of Trees
author Awal, Tanveer
author_facet Awal, Tanveer
Mahbubuzzaman, M.
Kashem, MD. Abul
author_role author
author2 Mahbubuzzaman, M.
Kashem, MD. Abul
author2_role author
author
dc.contributor.author.fl_str_mv Awal, Tanveer
Mahbubuzzaman, M.
Kashem, MD. Abul
dc.subject.por.fl_str_mv Algorithm
Chordal Gra ph
l-chromatic-number
l-edge-coloring
l-vertex-coloring
Graph
Tree
topic Algorithm
Chordal Gra ph
l-chromatic-number
l-edge-coloring
l-vertex-coloring
Graph
Tree
description Let � be a positive integer, and � be a graph with nonnegative integer weights on edges. Then a generalized vertex-coloring, called an �-vertex-coloring of �, is an assignment of colors to the vertices in such a way that any two vertices � and � get different colors if the distance between � and � in � is at most �. A coloring is optimal if it usesminimumnumber of distinct colors. The �-vertex-coloring problem is to find an optimal �-vertex-coloring of a graph �. In this paper we present an ���� � ������ time algorithm to find an �-vertex-coloring of a tree � , where � is the maximum degree of � . The algorithm takes ����� time if both � and � are bounded integers. We compute the upper bound of colors to be � � ������������� ����� . We also present an ���� � ������ time algorithm for solving the �-edge-coloring problem of trees. If both � and � are bounded integers, this algorithm also takes ����� time.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326
url https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/326/310
dc.rights.driver.fl_str_mv Copyright (c) 2016 INFOCOMP Journal of Computer Science
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 INFOCOMP Journal of Computer Science
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora da UFLA
publisher.none.fl_str_mv Editora da UFLA
dc.source.none.fl_str_mv INFOCOMP Journal of Computer Science; Vol. 10 No. 1 (2011): March, 2011; 36-44
1982-3363
1807-4545
reponame:INFOCOMP: Jornal de Ciência da Computação
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str INFOCOMP: Jornal de Ciência da Computação
collection INFOCOMP: Jornal de Ciência da Computação
repository.name.fl_str_mv INFOCOMP: Jornal de Ciência da Computação - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv infocomp@dcc.ufla.br||apfreire@dcc.ufla.br
_version_ 1799874741369044992