Random forests for online intrusion detection in computer networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/48677 |
Resumo: | This study proposes a methodology to build an Online Network Intrusion Detection System by using the Computational Intelligence technique called Random Forests and an API to preprocess the network packets. The experiments were carried out from two network traffic databases: The ISCX (i); and a test database (ii) created with the proposed API in our own network environment. The results obtained with the Random Forests technique show accuracy rates around 98%, bringing significant advances in the area of Intrusion Detection and affirming the high efficiency of the use of the technique to solve problems of intrusion detection in real network environments. |
id |
UFLA_0199fad26e875a1b3ae77f6a92652fc9 |
---|---|
oai_identifier_str |
oai:localhost:1/48677 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Random forests for online intrusion detection in computer networksIntrusion detection systemsComputer networksComputational IntelligenceRandom forestsSistemas de detecção de intrusãoRedes de computadoresInteligência computacionalThis study proposes a methodology to build an Online Network Intrusion Detection System by using the Computational Intelligence technique called Random Forests and an API to preprocess the network packets. The experiments were carried out from two network traffic databases: The ISCX (i); and a test database (ii) created with the proposed API in our own network environment. The results obtained with the Random Forests technique show accuracy rates around 98%, bringing significant advances in the area of Intrusion Detection and affirming the high efficiency of the use of the technique to solve problems of intrusion detection in real network environments.Science Publications2021-12-13T18:08:48Z2021-12-13T18:08:48Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSCALCO NETO, H.; LACERDA, W. S.; FRANÇOZO, R. V. Random forests for online intrusion detection in computer networks. Journal of Computer Science, [S. l.], v. 17, n. 10, p. 905-914, 2021. DOI: 10.3844/jcssp.2021.905.914.http://repositorio.ufla.br/jspui/handle/1/48677Journal of Computer Sciencereponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessScalco Neto, HeitorLacerda, Wilian SoaresFrançozo, Rafael Verãoeng2023-05-03T13:18:16Zoai:localhost:1/48677Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T13:18:16Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Random forests for online intrusion detection in computer networks |
title |
Random forests for online intrusion detection in computer networks |
spellingShingle |
Random forests for online intrusion detection in computer networks Scalco Neto, Heitor Intrusion detection systems Computer networks Computational Intelligence Random forests Sistemas de detecção de intrusão Redes de computadores Inteligência computacional |
title_short |
Random forests for online intrusion detection in computer networks |
title_full |
Random forests for online intrusion detection in computer networks |
title_fullStr |
Random forests for online intrusion detection in computer networks |
title_full_unstemmed |
Random forests for online intrusion detection in computer networks |
title_sort |
Random forests for online intrusion detection in computer networks |
author |
Scalco Neto, Heitor |
author_facet |
Scalco Neto, Heitor Lacerda, Wilian Soares Françozo, Rafael Verão |
author_role |
author |
author2 |
Lacerda, Wilian Soares Françozo, Rafael Verão |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Scalco Neto, Heitor Lacerda, Wilian Soares Françozo, Rafael Verão |
dc.subject.por.fl_str_mv |
Intrusion detection systems Computer networks Computational Intelligence Random forests Sistemas de detecção de intrusão Redes de computadores Inteligência computacional |
topic |
Intrusion detection systems Computer networks Computational Intelligence Random forests Sistemas de detecção de intrusão Redes de computadores Inteligência computacional |
description |
This study proposes a methodology to build an Online Network Intrusion Detection System by using the Computational Intelligence technique called Random Forests and an API to preprocess the network packets. The experiments were carried out from two network traffic databases: The ISCX (i); and a test database (ii) created with the proposed API in our own network environment. The results obtained with the Random Forests technique show accuracy rates around 98%, bringing significant advances in the area of Intrusion Detection and affirming the high efficiency of the use of the technique to solve problems of intrusion detection in real network environments. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-13T18:08:48Z 2021-12-13T18:08:48Z 2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SCALCO NETO, H.; LACERDA, W. S.; FRANÇOZO, R. V. Random forests for online intrusion detection in computer networks. Journal of Computer Science, [S. l.], v. 17, n. 10, p. 905-914, 2021. DOI: 10.3844/jcssp.2021.905.914. http://repositorio.ufla.br/jspui/handle/1/48677 |
identifier_str_mv |
SCALCO NETO, H.; LACERDA, W. S.; FRANÇOZO, R. V. Random forests for online intrusion detection in computer networks. Journal of Computer Science, [S. l.], v. 17, n. 10, p. 905-914, 2021. DOI: 10.3844/jcssp.2021.905.914. |
url |
http://repositorio.ufla.br/jspui/handle/1/48677 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Science Publications |
publisher.none.fl_str_mv |
Science Publications |
dc.source.none.fl_str_mv |
Journal of Computer Science reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1807835197102620672 |