Random forests for online intrusion detection in computer networks

Detalhes bibliográficos
Autor(a) principal: Scalco Neto, Heitor
Data de Publicação: 2021
Outros Autores: Lacerda, Wilian Soares, Françozo, Rafael Verão
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/48677
Resumo: This study proposes a methodology to build an Online Network Intrusion Detection System by using the Computational Intelligence technique called Random Forests and an API to preprocess the network packets. The experiments were carried out from two network traffic databases: The ISCX (i); and a test database (ii) created with the proposed API in our own network environment. The results obtained with the Random Forests technique show accuracy rates around 98%, bringing significant advances in the area of Intrusion Detection and affirming the high efficiency of the use of the technique to solve problems of intrusion detection in real network environments.
id UFLA_0199fad26e875a1b3ae77f6a92652fc9
oai_identifier_str oai:localhost:1/48677
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Random forests for online intrusion detection in computer networksIntrusion detection systemsComputer networksComputational IntelligenceRandom forestsSistemas de detecção de intrusãoRedes de computadoresInteligência computacionalThis study proposes a methodology to build an Online Network Intrusion Detection System by using the Computational Intelligence technique called Random Forests and an API to preprocess the network packets. The experiments were carried out from two network traffic databases: The ISCX (i); and a test database (ii) created with the proposed API in our own network environment. The results obtained with the Random Forests technique show accuracy rates around 98%, bringing significant advances in the area of Intrusion Detection and affirming the high efficiency of the use of the technique to solve problems of intrusion detection in real network environments.Science Publications2021-12-13T18:08:48Z2021-12-13T18:08:48Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSCALCO NETO, H.; LACERDA, W. S.; FRANÇOZO, R. V. Random forests for online intrusion detection in computer networks. Journal of Computer Science, [S. l.], v. 17, n. 10, p. 905-914, 2021. DOI: 10.3844/jcssp.2021.905.914.http://repositorio.ufla.br/jspui/handle/1/48677Journal of Computer Sciencereponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessScalco Neto, HeitorLacerda, Wilian SoaresFrançozo, Rafael Verãoeng2023-05-03T13:18:16Zoai:localhost:1/48677Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T13:18:16Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Random forests for online intrusion detection in computer networks
title Random forests for online intrusion detection in computer networks
spellingShingle Random forests for online intrusion detection in computer networks
Scalco Neto, Heitor
Intrusion detection systems
Computer networks
Computational Intelligence
Random forests
Sistemas de detecção de intrusão
Redes de computadores
Inteligência computacional
title_short Random forests for online intrusion detection in computer networks
title_full Random forests for online intrusion detection in computer networks
title_fullStr Random forests for online intrusion detection in computer networks
title_full_unstemmed Random forests for online intrusion detection in computer networks
title_sort Random forests for online intrusion detection in computer networks
author Scalco Neto, Heitor
author_facet Scalco Neto, Heitor
Lacerda, Wilian Soares
Françozo, Rafael Verão
author_role author
author2 Lacerda, Wilian Soares
Françozo, Rafael Verão
author2_role author
author
dc.contributor.author.fl_str_mv Scalco Neto, Heitor
Lacerda, Wilian Soares
Françozo, Rafael Verão
dc.subject.por.fl_str_mv Intrusion detection systems
Computer networks
Computational Intelligence
Random forests
Sistemas de detecção de intrusão
Redes de computadores
Inteligência computacional
topic Intrusion detection systems
Computer networks
Computational Intelligence
Random forests
Sistemas de detecção de intrusão
Redes de computadores
Inteligência computacional
description This study proposes a methodology to build an Online Network Intrusion Detection System by using the Computational Intelligence technique called Random Forests and an API to preprocess the network packets. The experiments were carried out from two network traffic databases: The ISCX (i); and a test database (ii) created with the proposed API in our own network environment. The results obtained with the Random Forests technique show accuracy rates around 98%, bringing significant advances in the area of Intrusion Detection and affirming the high efficiency of the use of the technique to solve problems of intrusion detection in real network environments.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-13T18:08:48Z
2021-12-13T18:08:48Z
2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SCALCO NETO, H.; LACERDA, W. S.; FRANÇOZO, R. V. Random forests for online intrusion detection in computer networks. Journal of Computer Science, [S. l.], v. 17, n. 10, p. 905-914, 2021. DOI: 10.3844/jcssp.2021.905.914.
http://repositorio.ufla.br/jspui/handle/1/48677
identifier_str_mv SCALCO NETO, H.; LACERDA, W. S.; FRANÇOZO, R. V. Random forests for online intrusion detection in computer networks. Journal of Computer Science, [S. l.], v. 17, n. 10, p. 905-914, 2021. DOI: 10.3844/jcssp.2021.905.914.
url http://repositorio.ufla.br/jspui/handle/1/48677
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Science Publications
publisher.none.fl_str_mv Science Publications
dc.source.none.fl_str_mv Journal of Computer Science
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835197102620672