State-space algorithms for estimating spike rate functions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/38051 |
Resumo: | The accurate characterization of spike firing rates including the determination of when changes in activity occur is a fundamental issue in the analysis of neurophysiological data. Here we describe a state-space model for estimating the spike rate function that provides a maximum likelihood estimate of the spike rate, model goodness-of-fit assessments, as well as confidence intervals for the spike rate function and any other associated quantities of interest. Using simulated spike data, we first compare the performance of the state-space approach with that of Bayesian adaptive regression splines (BARS) and a simple cubic spline smoothing algorithm. We show that the state-space model is computationally efficient and comparable with other spline approaches. Our results suggest both a theoretically sound and practical approach for estimating spike rate functions that is applicable to a wide range of neurophysiological data. |
id |
UFLA_1d98ffe6446f4ee77faf0af621bd71d6 |
---|---|
oai_identifier_str |
oai:localhost:1/38051 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
State-space algorithms for estimating spike rate functionsBayesian adaptive regression splinesSpike rate functionsAnalysis of neurophysiological dataSplines de regressão adaptativa bayesianaFunções de taxa de picoAnálise de dados neurofisiológicosThe accurate characterization of spike firing rates including the determination of when changes in activity occur is a fundamental issue in the analysis of neurophysiological data. Here we describe a state-space model for estimating the spike rate function that provides a maximum likelihood estimate of the spike rate, model goodness-of-fit assessments, as well as confidence intervals for the spike rate function and any other associated quantities of interest. Using simulated spike data, we first compare the performance of the state-space approach with that of Bayesian adaptive regression splines (BARS) and a simple cubic spline smoothing algorithm. We show that the state-space model is computationally efficient and comparable with other spline approaches. Our results suggest both a theoretically sound and practical approach for estimating spike rate functions that is applicable to a wide range of neurophysiological data.Hindawi2019-12-06T11:50:18Z2019-12-06T11:50:18Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSMITH, A. C. et al. State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience, [S. l.], v. 2010, p. 1-14, 2010. DOI: http://dx.doi.org/10.1155/2010/426539.http://repositorio.ufla.br/jspui/handle/1/38051Computational Intelligence and Neurosciencereponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSmith, Anne C.Scalon, Joao D.Wirth, SylviaYanike, MariannaSuzuki, Wendy A.Brown, Emery N.eng2019-12-06T11:50:19Zoai:localhost:1/38051Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2019-12-06T11:50:19Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
State-space algorithms for estimating spike rate functions |
title |
State-space algorithms for estimating spike rate functions |
spellingShingle |
State-space algorithms for estimating spike rate functions Smith, Anne C. Bayesian adaptive regression splines Spike rate functions Analysis of neurophysiological data Splines de regressão adaptativa bayesiana Funções de taxa de pico Análise de dados neurofisiológicos |
title_short |
State-space algorithms for estimating spike rate functions |
title_full |
State-space algorithms for estimating spike rate functions |
title_fullStr |
State-space algorithms for estimating spike rate functions |
title_full_unstemmed |
State-space algorithms for estimating spike rate functions |
title_sort |
State-space algorithms for estimating spike rate functions |
author |
Smith, Anne C. |
author_facet |
Smith, Anne C. Scalon, Joao D. Wirth, Sylvia Yanike, Marianna Suzuki, Wendy A. Brown, Emery N. |
author_role |
author |
author2 |
Scalon, Joao D. Wirth, Sylvia Yanike, Marianna Suzuki, Wendy A. Brown, Emery N. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Smith, Anne C. Scalon, Joao D. Wirth, Sylvia Yanike, Marianna Suzuki, Wendy A. Brown, Emery N. |
dc.subject.por.fl_str_mv |
Bayesian adaptive regression splines Spike rate functions Analysis of neurophysiological data Splines de regressão adaptativa bayesiana Funções de taxa de pico Análise de dados neurofisiológicos |
topic |
Bayesian adaptive regression splines Spike rate functions Analysis of neurophysiological data Splines de regressão adaptativa bayesiana Funções de taxa de pico Análise de dados neurofisiológicos |
description |
The accurate characterization of spike firing rates including the determination of when changes in activity occur is a fundamental issue in the analysis of neurophysiological data. Here we describe a state-space model for estimating the spike rate function that provides a maximum likelihood estimate of the spike rate, model goodness-of-fit assessments, as well as confidence intervals for the spike rate function and any other associated quantities of interest. Using simulated spike data, we first compare the performance of the state-space approach with that of Bayesian adaptive regression splines (BARS) and a simple cubic spline smoothing algorithm. We show that the state-space model is computationally efficient and comparable with other spline approaches. Our results suggest both a theoretically sound and practical approach for estimating spike rate functions that is applicable to a wide range of neurophysiological data. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2019-12-06T11:50:18Z 2019-12-06T11:50:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SMITH, A. C. et al. State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience, [S. l.], v. 2010, p. 1-14, 2010. DOI: http://dx.doi.org/10.1155/2010/426539. http://repositorio.ufla.br/jspui/handle/1/38051 |
identifier_str_mv |
SMITH, A. C. et al. State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience, [S. l.], v. 2010, p. 1-14, 2010. DOI: http://dx.doi.org/10.1155/2010/426539. |
url |
http://repositorio.ufla.br/jspui/handle/1/38051 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi |
publisher.none.fl_str_mv |
Hindawi |
dc.source.none.fl_str_mv |
Computational Intelligence and Neuroscience reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815438965275099136 |