State-space algorithms for estimating spike rate functions

Detalhes bibliográficos
Autor(a) principal: Smith, Anne C.
Data de Publicação: 2010
Outros Autores: Scalon, Joao D., Wirth, Sylvia, Yanike, Marianna, Suzuki, Wendy A., Brown, Emery N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/38051
Resumo: The accurate characterization of spike firing rates including the determination of when changes in activity occur is a fundamental issue in the analysis of neurophysiological data. Here we describe a state-space model for estimating the spike rate function that provides a maximum likelihood estimate of the spike rate, model goodness-of-fit assessments, as well as confidence intervals for the spike rate function and any other associated quantities of interest. Using simulated spike data, we first compare the performance of the state-space approach with that of Bayesian adaptive regression splines (BARS) and a simple cubic spline smoothing algorithm. We show that the state-space model is computationally efficient and comparable with other spline approaches. Our results suggest both a theoretically sound and practical approach for estimating spike rate functions that is applicable to a wide range of neurophysiological data.
id UFLA_1d98ffe6446f4ee77faf0af621bd71d6
oai_identifier_str oai:localhost:1/38051
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling State-space algorithms for estimating spike rate functionsBayesian adaptive regression splinesSpike rate functionsAnalysis of neurophysiological dataSplines de regressão adaptativa bayesianaFunções de taxa de picoAnálise de dados neurofisiológicosThe accurate characterization of spike firing rates including the determination of when changes in activity occur is a fundamental issue in the analysis of neurophysiological data. Here we describe a state-space model for estimating the spike rate function that provides a maximum likelihood estimate of the spike rate, model goodness-of-fit assessments, as well as confidence intervals for the spike rate function and any other associated quantities of interest. Using simulated spike data, we first compare the performance of the state-space approach with that of Bayesian adaptive regression splines (BARS) and a simple cubic spline smoothing algorithm. We show that the state-space model is computationally efficient and comparable with other spline approaches. Our results suggest both a theoretically sound and practical approach for estimating spike rate functions that is applicable to a wide range of neurophysiological data.Hindawi2019-12-06T11:50:18Z2019-12-06T11:50:18Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSMITH, A. C. et al. State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience, [S. l.], v. 2010, p. 1-14, 2010. DOI: http://dx.doi.org/10.1155/2010/426539.http://repositorio.ufla.br/jspui/handle/1/38051Computational Intelligence and Neurosciencereponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSmith, Anne C.Scalon, Joao D.Wirth, SylviaYanike, MariannaSuzuki, Wendy A.Brown, Emery N.eng2019-12-06T11:50:19Zoai:localhost:1/38051Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2019-12-06T11:50:19Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv State-space algorithms for estimating spike rate functions
title State-space algorithms for estimating spike rate functions
spellingShingle State-space algorithms for estimating spike rate functions
Smith, Anne C.
Bayesian adaptive regression splines
Spike rate functions
Analysis of neurophysiological data
Splines de regressão adaptativa bayesiana
Funções de taxa de pico
Análise de dados neurofisiológicos
title_short State-space algorithms for estimating spike rate functions
title_full State-space algorithms for estimating spike rate functions
title_fullStr State-space algorithms for estimating spike rate functions
title_full_unstemmed State-space algorithms for estimating spike rate functions
title_sort State-space algorithms for estimating spike rate functions
author Smith, Anne C.
author_facet Smith, Anne C.
Scalon, Joao D.
Wirth, Sylvia
Yanike, Marianna
Suzuki, Wendy A.
Brown, Emery N.
author_role author
author2 Scalon, Joao D.
Wirth, Sylvia
Yanike, Marianna
Suzuki, Wendy A.
Brown, Emery N.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Smith, Anne C.
Scalon, Joao D.
Wirth, Sylvia
Yanike, Marianna
Suzuki, Wendy A.
Brown, Emery N.
dc.subject.por.fl_str_mv Bayesian adaptive regression splines
Spike rate functions
Analysis of neurophysiological data
Splines de regressão adaptativa bayesiana
Funções de taxa de pico
Análise de dados neurofisiológicos
topic Bayesian adaptive regression splines
Spike rate functions
Analysis of neurophysiological data
Splines de regressão adaptativa bayesiana
Funções de taxa de pico
Análise de dados neurofisiológicos
description The accurate characterization of spike firing rates including the determination of when changes in activity occur is a fundamental issue in the analysis of neurophysiological data. Here we describe a state-space model for estimating the spike rate function that provides a maximum likelihood estimate of the spike rate, model goodness-of-fit assessments, as well as confidence intervals for the spike rate function and any other associated quantities of interest. Using simulated spike data, we first compare the performance of the state-space approach with that of Bayesian adaptive regression splines (BARS) and a simple cubic spline smoothing algorithm. We show that the state-space model is computationally efficient and comparable with other spline approaches. Our results suggest both a theoretically sound and practical approach for estimating spike rate functions that is applicable to a wide range of neurophysiological data.
publishDate 2010
dc.date.none.fl_str_mv 2010
2019-12-06T11:50:18Z
2019-12-06T11:50:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SMITH, A. C. et al. State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience, [S. l.], v. 2010, p. 1-14, 2010. DOI: http://dx.doi.org/10.1155/2010/426539.
http://repositorio.ufla.br/jspui/handle/1/38051
identifier_str_mv SMITH, A. C. et al. State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience, [S. l.], v. 2010, p. 1-14, 2010. DOI: http://dx.doi.org/10.1155/2010/426539.
url http://repositorio.ufla.br/jspui/handle/1/38051
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Hindawi
publisher.none.fl_str_mv Hindawi
dc.source.none.fl_str_mv Computational Intelligence and Neuroscience
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815438965275099136