The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/12019 |
Resumo: | The objectives of this work were to characterize seasonal dynamics of cerrado, deciduous and semideciduous forests in the north of Minas Gerais, Brazil. Time series of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS sensor, were compared by analyzing temporal profiles and image classification results. The results showed that: (1) there is an agreement between vegetation indexes and the monthly precipitation pattern; (2) deciduous forest showed the lowest values and the highest variation; (3) cerrado and the semideciduous forest presented higher values and lower variation; (4) based on the classification accuracies the best vegetation index for mapping the vegetation classes in the study area was the NDVI, however both indexes might be used to assess the vegetation seasonal dynamic; and (5) further research need to be carried out exploring the use of feature extractions algorithms to improve classification accuracy of cerrado, semideciduous and deciduos forests in Minas Gerais, Brazil. Key words: Remote sensi |
id |
UFLA_234723dd05e4be7b2bfec09e21e04bd8 |
---|---|
oai_identifier_str |
oai:localhost:1/12019 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODISCaracterização da dinâmica sazonal da vegetação usando imagens multitemporais NDVI e EVI derivadas do sensor MODISRemote sensingTime seriesVegetation indiesSensoriamento remotoSérie multitemporalÍndices de vegetaçãoThe objectives of this work were to characterize seasonal dynamics of cerrado, deciduous and semideciduous forests in the north of Minas Gerais, Brazil. Time series of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS sensor, were compared by analyzing temporal profiles and image classification results. The results showed that: (1) there is an agreement between vegetation indexes and the monthly precipitation pattern; (2) deciduous forest showed the lowest values and the highest variation; (3) cerrado and the semideciduous forest presented higher values and lower variation; (4) based on the classification accuracies the best vegetation index for mapping the vegetation classes in the study area was the NDVI, however both indexes might be used to assess the vegetation seasonal dynamic; and (5) further research need to be carried out exploring the use of feature extractions algorithms to improve classification accuracy of cerrado, semideciduous and deciduos forests in Minas Gerais, Brazil. Key words: Remote sensiO objetivo deste trabalho foi caracterizar a dinâmica sazonal do cerrado, floresta estacional semidecidual e decidual no norte do estado de Minas Gerais, Brasil. Séries multitemporais dos índices de vegetação NDVI (índice de vegetação da diferença normalizada) e EVI (índice de vegetação melhorado) derivados do sensor MODIS, foram comparadas analisando o perfil temporal e os resultados de classificação das imagens. Os resultados mostraram que: (1) Os índices de vegetação estudados refletiram o padrão sazonal das fisionomias, diferenciando os períodos chuvosos e os períodos de seca; (2) a fisionomia floresta estacional decidual apresentou menores valores dos índices e maior variação; (3) as fisionomias cerrado e floresta estacional semidecidual apresentaram alto valores dos índices e baixa variação; (4) de acordo com os resultados das classificações o melhor índice para o mapeamento das fisionomias na área de estudo foi o NDVI, porém ambos podem ser usados para avaliar a dinâmica sazonal da vegetação; e (5) estudos precisam ser realizados explorando algoritmos de extração de feições para melhorar a acuracidade do mapeamento das fisionomias cerrado, floresta decídua e semidecidua na área de estudo.Universidade Federal de Lavras2016-11-28T12:57:04Z2016-11-28T12:57:04Z2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVEIRA, E. M. de O. et al. The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS. Cerne, Lavras, v. 14, n. 2, p. 177-184, abr./jun. 2008.http://repositorio.ufla.br/jspui/handle/1/12019Cernereponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLASilveira, Eduarda Martiniano de OliveiraCarvalho, Luis Marcelo Tavares deAcerbi-Júnior, Fausto WeimarMello, José Marcio deinfo:eu-repo/semantics/openAccesseng2016-11-28T13:10:21Zoai:localhost:1/12019Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2016-11-28T13:10:21Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS Caracterização da dinâmica sazonal da vegetação usando imagens multitemporais NDVI e EVI derivadas do sensor MODIS |
title |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS |
spellingShingle |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS Silveira, Eduarda Martiniano de Oliveira Remote sensing Time series Vegetation indies Sensoriamento remoto Série multitemporal Índices de vegetação |
title_short |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS |
title_full |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS |
title_fullStr |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS |
title_full_unstemmed |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS |
title_sort |
The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS |
author |
Silveira, Eduarda Martiniano de Oliveira |
author_facet |
Silveira, Eduarda Martiniano de Oliveira Carvalho, Luis Marcelo Tavares de Acerbi-Júnior, Fausto Weimar Mello, José Marcio de |
author_role |
author |
author2 |
Carvalho, Luis Marcelo Tavares de Acerbi-Júnior, Fausto Weimar Mello, José Marcio de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Silveira, Eduarda Martiniano de Oliveira Carvalho, Luis Marcelo Tavares de Acerbi-Júnior, Fausto Weimar Mello, José Marcio de |
dc.subject.por.fl_str_mv |
Remote sensing Time series Vegetation indies Sensoriamento remoto Série multitemporal Índices de vegetação |
topic |
Remote sensing Time series Vegetation indies Sensoriamento remoto Série multitemporal Índices de vegetação |
description |
The objectives of this work were to characterize seasonal dynamics of cerrado, deciduous and semideciduous forests in the north of Minas Gerais, Brazil. Time series of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS sensor, were compared by analyzing temporal profiles and image classification results. The results showed that: (1) there is an agreement between vegetation indexes and the monthly precipitation pattern; (2) deciduous forest showed the lowest values and the highest variation; (3) cerrado and the semideciduous forest presented higher values and lower variation; (4) based on the classification accuracies the best vegetation index for mapping the vegetation classes in the study area was the NDVI, however both indexes might be used to assess the vegetation seasonal dynamic; and (5) further research need to be carried out exploring the use of feature extractions algorithms to improve classification accuracy of cerrado, semideciduous and deciduos forests in Minas Gerais, Brazil. Key words: Remote sensi |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2016-11-28T12:57:04Z 2016-11-28T12:57:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVEIRA, E. M. de O. et al. The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS. Cerne, Lavras, v. 14, n. 2, p. 177-184, abr./jun. 2008. http://repositorio.ufla.br/jspui/handle/1/12019 |
identifier_str_mv |
SILVEIRA, E. M. de O. et al. The assessment of vegetation seasonal dynamics using multitemporal NDVI and EVI images derived from MODIS. Cerne, Lavras, v. 14, n. 2, p. 177-184, abr./jun. 2008. |
url |
http://repositorio.ufla.br/jspui/handle/1/12019 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras |
publisher.none.fl_str_mv |
Universidade Federal de Lavras |
dc.source.none.fl_str_mv |
Cerne reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439368275361792 |