Predicting road mortality risk using life traits of birds and mammals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/13323 |
Resumo: | Roads are a ubiquitous feature in landscape, and wildlife-vehicle collision can affect populations influencing their long-term persistence. However, some species are more likely to be killed than others. Moreover, many species that are still unstudied or are not detected on road surveys might be affected by road mortality. To help understand why species are road-killed at distinct rates, it is useful to examine the relationship between their traits and the road-kill risk. We developed trait-based models using random forest regression to assess the role of a wide range of species’ traits on road-kill rates for bird and mammal species. We then used these models to predict risk for all bird and mammal species in Brazil. Bird road-kill rates were best explained by body mass, habitat breadth, lifespan and maturity age, whereas mammal road-kill rates were best explained by feeding behavior, home range, habitat breadth, body mass, diet breadth and maturity age. Birds with more than 2 kg and habitat generalists were positively related to high road-kill rates. Short maturity age and lifespan were also associated with high vulnerability to traffic. Mammals exhibiting scavenging feeding behavior, small and intermediate home range sizes, being habitat and diet generalists, with body masses between 3 kg and 45 kg, and earlier maturity age were more susceptible to high road-kill rates. We found that 16 bird and 14 mammal species are potentially vulnerable to road mortality. Our model contributes to a better understanding of the biological characteristics that make species particularly vulnerable to road-kill. We argue that road-kill risk assessment should focus not only on road and landscape related features, but also use the available knowledge on species traits to provide more accurate information for environmental impact assessments. |
id |
UFLA_30fbe26bbeb35bcdfed502a86b477ff3 |
---|---|
oai_identifier_str |
oai:localhost:1/13323 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Predicting road mortality risk using life traits of birds and mammalsPrevendo o risco de atropelamento utilizando atributos de aves e mamíferosAves - AtropelamentoMamíferos - AtropelamentoAnimais - AtropelamentoRandom forest regressionBirds - Road killMammals - Road killAnimals - road killEcologia AplicadaRoads are a ubiquitous feature in landscape, and wildlife-vehicle collision can affect populations influencing their long-term persistence. However, some species are more likely to be killed than others. Moreover, many species that are still unstudied or are not detected on road surveys might be affected by road mortality. To help understand why species are road-killed at distinct rates, it is useful to examine the relationship between their traits and the road-kill risk. We developed trait-based models using random forest regression to assess the role of a wide range of species’ traits on road-kill rates for bird and mammal species. We then used these models to predict risk for all bird and mammal species in Brazil. Bird road-kill rates were best explained by body mass, habitat breadth, lifespan and maturity age, whereas mammal road-kill rates were best explained by feeding behavior, home range, habitat breadth, body mass, diet breadth and maturity age. Birds with more than 2 kg and habitat generalists were positively related to high road-kill rates. Short maturity age and lifespan were also associated with high vulnerability to traffic. Mammals exhibiting scavenging feeding behavior, small and intermediate home range sizes, being habitat and diet generalists, with body masses between 3 kg and 45 kg, and earlier maturity age were more susceptible to high road-kill rates. We found that 16 bird and 14 mammal species are potentially vulnerable to road mortality. Our model contributes to a better understanding of the biological characteristics that make species particularly vulnerable to road-kill. We argue that road-kill risk assessment should focus not only on road and landscape related features, but also use the available knowledge on species traits to provide more accurate information for environmental impact assessments.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Estradas são estruturas ubíquas na paisagem, e a colisão da fauna com veículos pode afetar as populações, influenciando sua persistência no longo prazo. Entretanto, algumas espécies são mais suscetíveis a serem atropeladas do que outras. Ademais, muitas espécies que ainda não foram estudadas ou detectadas em amostragens rodoviárias podem ser afetadas pela mortalidade em rodovias. Para ajudar a entender por que espécies são atropeladas a diferentes taxas é útil examinar a relação entre seus traços e o risco de atropelamento. Nós desenvolvemos modelos baseados em traços utilizando random forest regression para avaliar o papel de uma ampla variedade de traços das espécies nas taxas de atropelamento de aves e mamíferos. Utilizamos então esses modelos para prever o risco para todas as espécies de aves e mamíferos brasileiras. As taxas de atropelamento de aves foram melhor explicadas pela massa corporal, amplitude de habitat, longevidade e idade de maturidade sexual, enquanto as taxas de atropelamento de mamíferos foram melhor explicadas pelo comportamento de alimentação, área de vida, amplitude de habitat, massa corporal, amplitude de dieta e idade de maturidade sexual. Aves com mais de 2 kg e generalistas de habitat foram positivamente correlacionadas com altas taxas de atropelamento. Rápido amadurecimento sexual e curta longevidade foram também associados à alta vulnerabilidade ao tráfego. Mamíferos carniceiros, com áreas de vida pequenas e médias, generalistas em habitat e dieta, com massa corporal entre 3kg e 45 kg, e rápida maturidade sexual foram mais suscetíveis a altas taxas de atropelamento. Nós identificamos 16 aves e 14 mamíferos potencialmente vulneráveis à mortalidade em rodovias. Nosso modelo contribui para melhor compreender as características biológicas que tornam as espécies particularmente vulneráveis ao atropelamento. Nós argumentamos que a avaliação do risco de atropelamento deve focar não apenas nas características da estrada e da paisagem, mas também utilizar o conhecimento disponível acerca dos traços das espécies para gerar informação mais precisa para avaliações de impacto ambiental.Universidade Federal de LavrasPrograma de Pós-Graduação em Ecologia AplicadaUFLAbrasilDepartamento de BiologiaGrilo, Clara BentesGonzález-Suárez, ManuelaMagnago, Luiz Fernando SilvaKindel, AndreasFerreira, Flávio Zanchetta2017-07-13T11:21:25Z2017-07-13T11:21:25Z2017-07-112017-05-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFERREIRA, F. Z. Predicting road mortality risk using life traits of birds and mammals. 2017. 72 p. Dissertação (Mestrado em Ecologia Aplicada)-Universidade Federal de Lavras, Lavras, 2017.http://repositorio.ufla.br/jspui/handle/1/13323enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2017-07-13T11:21:25Zoai:localhost:1/13323Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2017-07-13T11:21:25Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Predicting road mortality risk using life traits of birds and mammals Prevendo o risco de atropelamento utilizando atributos de aves e mamíferos |
title |
Predicting road mortality risk using life traits of birds and mammals |
spellingShingle |
Predicting road mortality risk using life traits of birds and mammals Ferreira, Flávio Zanchetta Aves - Atropelamento Mamíferos - Atropelamento Animais - Atropelamento Random forest regression Birds - Road kill Mammals - Road kill Animals - road kill Ecologia Aplicada |
title_short |
Predicting road mortality risk using life traits of birds and mammals |
title_full |
Predicting road mortality risk using life traits of birds and mammals |
title_fullStr |
Predicting road mortality risk using life traits of birds and mammals |
title_full_unstemmed |
Predicting road mortality risk using life traits of birds and mammals |
title_sort |
Predicting road mortality risk using life traits of birds and mammals |
author |
Ferreira, Flávio Zanchetta |
author_facet |
Ferreira, Flávio Zanchetta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Grilo, Clara Bentes González-Suárez, Manuela Magnago, Luiz Fernando Silva Kindel, Andreas |
dc.contributor.author.fl_str_mv |
Ferreira, Flávio Zanchetta |
dc.subject.por.fl_str_mv |
Aves - Atropelamento Mamíferos - Atropelamento Animais - Atropelamento Random forest regression Birds - Road kill Mammals - Road kill Animals - road kill Ecologia Aplicada |
topic |
Aves - Atropelamento Mamíferos - Atropelamento Animais - Atropelamento Random forest regression Birds - Road kill Mammals - Road kill Animals - road kill Ecologia Aplicada |
description |
Roads are a ubiquitous feature in landscape, and wildlife-vehicle collision can affect populations influencing their long-term persistence. However, some species are more likely to be killed than others. Moreover, many species that are still unstudied or are not detected on road surveys might be affected by road mortality. To help understand why species are road-killed at distinct rates, it is useful to examine the relationship between their traits and the road-kill risk. We developed trait-based models using random forest regression to assess the role of a wide range of species’ traits on road-kill rates for bird and mammal species. We then used these models to predict risk for all bird and mammal species in Brazil. Bird road-kill rates were best explained by body mass, habitat breadth, lifespan and maturity age, whereas mammal road-kill rates were best explained by feeding behavior, home range, habitat breadth, body mass, diet breadth and maturity age. Birds with more than 2 kg and habitat generalists were positively related to high road-kill rates. Short maturity age and lifespan were also associated with high vulnerability to traffic. Mammals exhibiting scavenging feeding behavior, small and intermediate home range sizes, being habitat and diet generalists, with body masses between 3 kg and 45 kg, and earlier maturity age were more susceptible to high road-kill rates. We found that 16 bird and 14 mammal species are potentially vulnerable to road mortality. Our model contributes to a better understanding of the biological characteristics that make species particularly vulnerable to road-kill. We argue that road-kill risk assessment should focus not only on road and landscape related features, but also use the available knowledge on species traits to provide more accurate information for environmental impact assessments. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07-13T11:21:25Z 2017-07-13T11:21:25Z 2017-07-11 2017-05-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERREIRA, F. Z. Predicting road mortality risk using life traits of birds and mammals. 2017. 72 p. Dissertação (Mestrado em Ecologia Aplicada)-Universidade Federal de Lavras, Lavras, 2017. http://repositorio.ufla.br/jspui/handle/1/13323 |
identifier_str_mv |
FERREIRA, F. Z. Predicting road mortality risk using life traits of birds and mammals. 2017. 72 p. Dissertação (Mestrado em Ecologia Aplicada)-Universidade Federal de Lavras, Lavras, 2017. |
url |
http://repositorio.ufla.br/jspui/handle/1/13323 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Ecologia Aplicada UFLA brasil Departamento de Biologia |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Ecologia Aplicada UFLA brasil Departamento de Biologia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439030889742336 |