Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification

Detalhes bibliográficos
Autor(a) principal: Furlong, Vitor B.
Data de Publicação: 2019
Outros Autores: Corrêa, Luciano J., Giordano, Roberto C., Ribeiro, Marcelo P. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/40689
Resumo: The enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible, many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten and Langmuir-based ones, have been used to describe batch processes. However, these simple models have difficulties in predicting fed-batch operations with different feeding policies. To overcome this problem and avoid an increase in the complexity of the model by incorporating other phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a consortium of different simple models for this process. Pretreated sugar cane bagasse was used as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each responsible for describing the reaction path for a distinct range of solids concentrations in the reactor. The fuzzy model improved fitting and increased prediction in a validation data set.
id UFLA_3736fa58c43d098657779a403726c36c
oai_identifier_str oai:localhost:1/40689
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharificationFed-batchFuzzy modelingHigh solidsLignocellulosic biomass hydrolysisModelagem fuzzyBiomassa lignocelulósicaHidrólise enzimáticaThe enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible, many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten and Langmuir-based ones, have been used to describe batch processes. However, these simple models have difficulties in predicting fed-batch operations with different feeding policies. To overcome this problem and avoid an increase in the complexity of the model by incorporating other phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a consortium of different simple models for this process. Pretreated sugar cane bagasse was used as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each responsible for describing the reaction path for a distinct range of solids concentrations in the reactor. The fuzzy model improved fitting and increased prediction in a validation data set.MDPI Journals2020-05-07T18:35:14Z2020-05-07T18:35:14Z2019-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFURLONG, V. B. et al. Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies, Basel, v. 12, n. 11, Jun. 2019. doi:10.3390/en12112110.http://repositorio.ufla.br/jspui/handle/1/40689Energiesreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessFurlong, Vitor B.Corrêa, Luciano J.Giordano, Roberto C.Ribeiro, Marcelo P. A.eng2020-05-07T18:35:44Zoai:localhost:1/40689Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2020-05-07T18:35:44Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
title Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
spellingShingle Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
Furlong, Vitor B.
Fed-batch
Fuzzy modeling
High solids
Lignocellulosic biomass hydrolysis
Modelagem fuzzy
Biomassa lignocelulósica
Hidrólise enzimática
title_short Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
title_full Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
title_fullStr Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
title_full_unstemmed Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
title_sort Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
author Furlong, Vitor B.
author_facet Furlong, Vitor B.
Corrêa, Luciano J.
Giordano, Roberto C.
Ribeiro, Marcelo P. A.
author_role author
author2 Corrêa, Luciano J.
Giordano, Roberto C.
Ribeiro, Marcelo P. A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Furlong, Vitor B.
Corrêa, Luciano J.
Giordano, Roberto C.
Ribeiro, Marcelo P. A.
dc.subject.por.fl_str_mv Fed-batch
Fuzzy modeling
High solids
Lignocellulosic biomass hydrolysis
Modelagem fuzzy
Biomassa lignocelulósica
Hidrólise enzimática
topic Fed-batch
Fuzzy modeling
High solids
Lignocellulosic biomass hydrolysis
Modelagem fuzzy
Biomassa lignocelulósica
Hidrólise enzimática
description The enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible, many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten and Langmuir-based ones, have been used to describe batch processes. However, these simple models have difficulties in predicting fed-batch operations with different feeding policies. To overcome this problem and avoid an increase in the complexity of the model by incorporating other phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a consortium of different simple models for this process. Pretreated sugar cane bagasse was used as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each responsible for describing the reaction path for a distinct range of solids concentrations in the reactor. The fuzzy model improved fitting and increased prediction in a validation data set.
publishDate 2019
dc.date.none.fl_str_mv 2019-06
2020-05-07T18:35:14Z
2020-05-07T18:35:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv FURLONG, V. B. et al. Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies, Basel, v. 12, n. 11, Jun. 2019. doi:10.3390/en12112110.
http://repositorio.ufla.br/jspui/handle/1/40689
identifier_str_mv FURLONG, V. B. et al. Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies, Basel, v. 12, n. 11, Jun. 2019. doi:10.3390/en12112110.
url http://repositorio.ufla.br/jspui/handle/1/40689
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI Journals
publisher.none.fl_str_mv MDPI Journals
dc.source.none.fl_str_mv Energies
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815438996662124544