Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/40689 |
Resumo: | The enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible, many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten and Langmuir-based ones, have been used to describe batch processes. However, these simple models have difficulties in predicting fed-batch operations with different feeding policies. To overcome this problem and avoid an increase in the complexity of the model by incorporating other phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a consortium of different simple models for this process. Pretreated sugar cane bagasse was used as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each responsible for describing the reaction path for a distinct range of solids concentrations in the reactor. The fuzzy model improved fitting and increased prediction in a validation data set. |
id |
UFLA_3736fa58c43d098657779a403726c36c |
---|---|
oai_identifier_str |
oai:localhost:1/40689 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharificationFed-batchFuzzy modelingHigh solidsLignocellulosic biomass hydrolysisModelagem fuzzyBiomassa lignocelulósicaHidrólise enzimáticaThe enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible, many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten and Langmuir-based ones, have been used to describe batch processes. However, these simple models have difficulties in predicting fed-batch operations with different feeding policies. To overcome this problem and avoid an increase in the complexity of the model by incorporating other phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a consortium of different simple models for this process. Pretreated sugar cane bagasse was used as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each responsible for describing the reaction path for a distinct range of solids concentrations in the reactor. The fuzzy model improved fitting and increased prediction in a validation data set.MDPI Journals2020-05-07T18:35:14Z2020-05-07T18:35:14Z2019-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFURLONG, V. B. et al. Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies, Basel, v. 12, n. 11, Jun. 2019. doi:10.3390/en12112110.http://repositorio.ufla.br/jspui/handle/1/40689Energiesreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessFurlong, Vitor B.Corrêa, Luciano J.Giordano, Roberto C.Ribeiro, Marcelo P. A.eng2020-05-07T18:35:44Zoai:localhost:1/40689Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2020-05-07T18:35:44Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification |
title |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification |
spellingShingle |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification Furlong, Vitor B. Fed-batch Fuzzy modeling High solids Lignocellulosic biomass hydrolysis Modelagem fuzzy Biomassa lignocelulósica Hidrólise enzimática |
title_short |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification |
title_full |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification |
title_fullStr |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification |
title_full_unstemmed |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification |
title_sort |
Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification |
author |
Furlong, Vitor B. |
author_facet |
Furlong, Vitor B. Corrêa, Luciano J. Giordano, Roberto C. Ribeiro, Marcelo P. A. |
author_role |
author |
author2 |
Corrêa, Luciano J. Giordano, Roberto C. Ribeiro, Marcelo P. A. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Furlong, Vitor B. Corrêa, Luciano J. Giordano, Roberto C. Ribeiro, Marcelo P. A. |
dc.subject.por.fl_str_mv |
Fed-batch Fuzzy modeling High solids Lignocellulosic biomass hydrolysis Modelagem fuzzy Biomassa lignocelulósica Hidrólise enzimática |
topic |
Fed-batch Fuzzy modeling High solids Lignocellulosic biomass hydrolysis Modelagem fuzzy Biomassa lignocelulósica Hidrólise enzimática |
description |
The enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible, many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten and Langmuir-based ones, have been used to describe batch processes. However, these simple models have difficulties in predicting fed-batch operations with different feeding policies. To overcome this problem and avoid an increase in the complexity of the model by incorporating other phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a consortium of different simple models for this process. Pretreated sugar cane bagasse was used as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each responsible for describing the reaction path for a distinct range of solids concentrations in the reactor. The fuzzy model improved fitting and increased prediction in a validation data set. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 2020-05-07T18:35:14Z 2020-05-07T18:35:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FURLONG, V. B. et al. Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies, Basel, v. 12, n. 11, Jun. 2019. doi:10.3390/en12112110. http://repositorio.ufla.br/jspui/handle/1/40689 |
identifier_str_mv |
FURLONG, V. B. et al. Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies, Basel, v. 12, n. 11, Jun. 2019. doi:10.3390/en12112110. |
url |
http://repositorio.ufla.br/jspui/handle/1/40689 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI Journals |
publisher.none.fl_str_mv |
MDPI Journals |
dc.source.none.fl_str_mv |
Energies reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815438996662124544 |