Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/48587 |
Resumo: | This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot. |
id |
UFLA_46a6062c7e73a114dbaff0f548f39b2a |
---|---|
oai_identifier_str |
oai:localhost:1/48587 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus treesReducción de la intensidad de muestreo en inventarios forestales para estimar la altura total de eucaliptosArtificial neural networkMachine learningStem volumeSchumacher and HallRedes neuronales artificialeAltura dominanteRede neural artificialInventário florestalThis study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.RESUMEN: El objetivo fue evaluar el desempeño de diferentes modelos basados en Redes Neuronales Artificiales (RNA) en la estimación de la altura total de los eucaliptos, reduciendo el número de mediciones en el campo. Se analizaron 48 RNA, diferentes entre sí por el número de árboles utilizados como muestra de entrenamiento; número de árboles utilizados para calcular la altura dominante; y el uso de (a) variables categóricas, (b) categóricas y continuas y (c) continuas, con la excepción del diámetro a 1,30 m del suelo (DAP), utilizadas en todas las combinaciones. Las estimaciones de altura obtenidas por RNA han sido comparadas con los valores observados y con las estimaciones obtenidas por un modelo hipsométrico. Las RNA que presentaron los mejores rendimientos se utilizaron para estimar la altura en los datos del inventario forestal, para el cálculo posterior del volumen de cada árbol. Los modelos propuestos demostraron ser eficientes para estimar la altura total de los eucaliptos y permitieron la reducción expresiva de la cantidad de árboles que se medirán en el inventario forestal. El mejor modelo encontrado se compone de cinco árboles como muestra de entrenamiento, uno como muestra de prueba y uno como muestra de validación; altura dominante desde la altura del árbol más alto en la parcela; variable categórica clon; y variables continuas DAP, DAP dominante y área basal de la parcela.Universidad Austral de Chile, Facultad de Ciencias Forestales2021-12-02T21:13:47Z2021-12-02T21:13:47Z2020-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfDANTAS, D. et al. Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees. Bosque, Valdivia, v. 41, n. 3, p. 353-364, dic. 2020. DOI: 10.4067/S0717-92002020000300353.http://repositorio.ufla.br/jspui/handle/1/48587Bosque (Valdivia)reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessDantas, DanielPinto, Luiz Otávio RodriguesTerra, Marcela de Castro Nunes SantosCalegario, NatalinoOliveira, Marcio Leles Romarco deeng2021-12-02T21:14:05Zoai:localhost:1/48587Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-12-02T21:14:05Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees Reducción de la intensidad de muestreo en inventarios forestales para estimar la altura total de eucaliptos |
title |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees |
spellingShingle |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees Dantas, Daniel Artificial neural network Machine learning Stem volume Schumacher and Hall Redes neuronales artificiale Altura dominante Rede neural artificial Inventário florestal |
title_short |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees |
title_full |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees |
title_fullStr |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees |
title_full_unstemmed |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees |
title_sort |
Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees |
author |
Dantas, Daniel |
author_facet |
Dantas, Daniel Pinto, Luiz Otávio Rodrigues Terra, Marcela de Castro Nunes Santos Calegario, Natalino Oliveira, Marcio Leles Romarco de |
author_role |
author |
author2 |
Pinto, Luiz Otávio Rodrigues Terra, Marcela de Castro Nunes Santos Calegario, Natalino Oliveira, Marcio Leles Romarco de |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Dantas, Daniel Pinto, Luiz Otávio Rodrigues Terra, Marcela de Castro Nunes Santos Calegario, Natalino Oliveira, Marcio Leles Romarco de |
dc.subject.por.fl_str_mv |
Artificial neural network Machine learning Stem volume Schumacher and Hall Redes neuronales artificiale Altura dominante Rede neural artificial Inventário florestal |
topic |
Artificial neural network Machine learning Stem volume Schumacher and Hall Redes neuronales artificiale Altura dominante Rede neural artificial Inventário florestal |
description |
This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 2021-12-02T21:13:47Z 2021-12-02T21:13:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
DANTAS, D. et al. Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees. Bosque, Valdivia, v. 41, n. 3, p. 353-364, dic. 2020. DOI: 10.4067/S0717-92002020000300353. http://repositorio.ufla.br/jspui/handle/1/48587 |
identifier_str_mv |
DANTAS, D. et al. Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees. Bosque, Valdivia, v. 41, n. 3, p. 353-364, dic. 2020. DOI: 10.4067/S0717-92002020000300353. |
url |
http://repositorio.ufla.br/jspui/handle/1/48587 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Austral de Chile, Facultad de Ciencias Forestales |
publisher.none.fl_str_mv |
Universidad Austral de Chile, Facultad de Ciencias Forestales |
dc.source.none.fl_str_mv |
Bosque (Valdivia) reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439199148441600 |