Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees

Detalhes bibliográficos
Autor(a) principal: Dantas, Daniel
Data de Publicação: 2020
Outros Autores: Pinto, Luiz Otávio Rodrigues, Terra, Marcela de Castro Nunes Santos, Calegario, Natalino, Oliveira, Marcio Leles Romarco de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/48587
Resumo: This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.
id UFLA_46a6062c7e73a114dbaff0f548f39b2a
oai_identifier_str oai:localhost:1/48587
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus treesReducción de la intensidad de muestreo en inventarios forestales para estimar la altura total de eucaliptosArtificial neural networkMachine learningStem volumeSchumacher and HallRedes neuronales artificialeAltura dominanteRede neural artificialInventário florestalThis study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.RESUMEN: El objetivo fue evaluar el desempeño de diferentes modelos basados ​​en Redes Neuronales Artificiales (RNA) en la estimación de la altura total de los eucaliptos, reduciendo el número de mediciones en el campo. Se analizaron 48 RNA, diferentes entre sí por el número de árboles utilizados como muestra de entrenamiento; número de árboles utilizados para calcular la altura dominante; y el uso de (a) variables categóricas, (b) categóricas y continuas y (c) continuas, con la excepción del diámetro a 1,30 m del suelo (DAP), utilizadas en todas las combinaciones. Las estimaciones de altura obtenidas por RNA han sido comparadas con los valores observados y con las estimaciones obtenidas por un modelo hipsométrico. Las RNA que presentaron los mejores rendimientos se utilizaron para estimar la altura en los datos del inventario forestal, para el cálculo posterior del volumen de cada árbol. Los modelos propuestos demostraron ser eficientes para estimar la altura total de los eucaliptos y permitieron la reducción expresiva de la cantidad de árboles que se medirán en el inventario forestal. El mejor modelo encontrado se compone de cinco árboles como muestra de entrenamiento, uno como muestra de prueba y uno como muestra de validación; altura dominante desde la altura del árbol más alto en la parcela; variable categórica clon; y variables continuas DAP, DAP dominante y área basal de la parcela.Universidad Austral de Chile, Facultad de Ciencias Forestales2021-12-02T21:13:47Z2021-12-02T21:13:47Z2020-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfDANTAS, D. et al. Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees. Bosque, Valdivia, v. 41, n. 3, p. 353-364, dic. 2020. DOI: 10.4067/S0717-92002020000300353.http://repositorio.ufla.br/jspui/handle/1/48587Bosque (Valdivia)reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessDantas, DanielPinto, Luiz Otávio RodriguesTerra, Marcela de Castro Nunes SantosCalegario, NatalinoOliveira, Marcio Leles Romarco deeng2021-12-02T21:14:05Zoai:localhost:1/48587Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-12-02T21:14:05Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
Reducción de la intensidad de muestreo en inventarios forestales para estimar la altura total de eucaliptos
title Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
spellingShingle Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
Dantas, Daniel
Artificial neural network
Machine learning
Stem volume
Schumacher and Hall
Redes neuronales artificiale
Altura dominante
Rede neural artificial
Inventário florestal
title_short Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
title_full Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
title_fullStr Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
title_full_unstemmed Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
title_sort Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
author Dantas, Daniel
author_facet Dantas, Daniel
Pinto, Luiz Otávio Rodrigues
Terra, Marcela de Castro Nunes Santos
Calegario, Natalino
Oliveira, Marcio Leles Romarco de
author_role author
author2 Pinto, Luiz Otávio Rodrigues
Terra, Marcela de Castro Nunes Santos
Calegario, Natalino
Oliveira, Marcio Leles Romarco de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Dantas, Daniel
Pinto, Luiz Otávio Rodrigues
Terra, Marcela de Castro Nunes Santos
Calegario, Natalino
Oliveira, Marcio Leles Romarco de
dc.subject.por.fl_str_mv Artificial neural network
Machine learning
Stem volume
Schumacher and Hall
Redes neuronales artificiale
Altura dominante
Rede neural artificial
Inventário florestal
topic Artificial neural network
Machine learning
Stem volume
Schumacher and Hall
Redes neuronales artificiale
Altura dominante
Rede neural artificial
Inventário florestal
description This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
2021-12-02T21:13:47Z
2021-12-02T21:13:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv DANTAS, D. et al. Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees. Bosque, Valdivia, v. 41, n. 3, p. 353-364, dic. 2020. DOI: 10.4067/S0717-92002020000300353.
http://repositorio.ufla.br/jspui/handle/1/48587
identifier_str_mv DANTAS, D. et al. Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees. Bosque, Valdivia, v. 41, n. 3, p. 353-364, dic. 2020. DOI: 10.4067/S0717-92002020000300353.
url http://repositorio.ufla.br/jspui/handle/1/48587
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Austral de Chile, Facultad de Ciencias Forestales
publisher.none.fl_str_mv Universidad Austral de Chile, Facultad de Ciencias Forestales
dc.source.none.fl_str_mv Bosque (Valdivia)
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439199148441600