Support vector machine to estimate volume of Eucalypt trees

Detalhes bibliográficos
Autor(a) principal: Binoti, Daniel Henrique Breda
Data de Publicação: 2016
Outros Autores: Binoti, Mayra Luiza Marques da Silva, Leite, Helio Garcia, Andrade, Alessandro Vivas, Nogueira, Gilciano Saraiva, Romarco, Marcio Leles, Pitangui, Cristiano Grijó
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/0100-67622016000400012
http://www.locus.ufv.br/handle/123456789/16126
Resumo: This study aimed to test the application of the technique of support vector machines (SVM) to estimate the volume of eucalyptus trees. The data used in this study were from of 2307 trees of clonal hybrids (Eucalyptus grandis x Eucalyptus urophylla) located in southern Bahia. In the definition of stratification traditionally used 53 stratums were defined (defined by the stratification project and clone). He set the model of Schumacher and Hall for each stratum. The SVM were constructed to correlate the volume of trees on the basis of other independent variables which may be numeric as dbh and height and categorical as genetic material and design. The estimates were analyzed using statistical and graphical analysis of residues. The analysis consisted of the graphical inspection statistical dispersion of errors (residuals) in relation to the percentage of the values observed, and the analysis of the histogram of residues. The statistics used were the correlation between the observed and estimated volumes. The model of Schumacher and Hall showed the correlation between observed and predicted values of 0,993, and the SVM set of correlated 0,994. The SVM technology showed good adaptation to the problem, and this can use to predict the volumetric production of planted forests.
id UFV_a452c8cae7645f9724cbcb9d0580fa44
oai_identifier_str oai:locus.ufv.br:123456789/16126
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Support vector machine to estimate volume of Eucalypt treesVolume equationsMachines learningSchumacher and hallThis study aimed to test the application of the technique of support vector machines (SVM) to estimate the volume of eucalyptus trees. The data used in this study were from of 2307 trees of clonal hybrids (Eucalyptus grandis x Eucalyptus urophylla) located in southern Bahia. In the definition of stratification traditionally used 53 stratums were defined (defined by the stratification project and clone). He set the model of Schumacher and Hall for each stratum. The SVM were constructed to correlate the volume of trees on the basis of other independent variables which may be numeric as dbh and height and categorical as genetic material and design. The estimates were analyzed using statistical and graphical analysis of residues. The analysis consisted of the graphical inspection statistical dispersion of errors (residuals) in relation to the percentage of the values observed, and the analysis of the histogram of residues. The statistics used were the correlation between the observed and estimated volumes. The model of Schumacher and Hall showed the correlation between observed and predicted values of 0,993, and the SVM set of correlated 0,994. The SVM technology showed good adaptation to the problem, and this can use to predict the volumetric production of planted forests.O presente trabalho objetivou-se testar a aplicação da técnica de Máquinas vetores de suporte (SVM) para a estimação do volume de árvores de eucalipto. Os dados utilizados neste estudo foram provenientes de cubagens de 2.307 árvores de povoamentos clonais híbridos (Eucalyptus grandis x Eucalyptus urophylla) localizados no sul da Bahia. Na definição de estratificação de cubagens tradicionalmente usada foram definidos 53 estratos (definidos pela estratificação projeto e clone). Ajustou-se o modelo de Schumacher e Hall para cada estrato. As SVM foram construídas para correlacionar o volume das árvores em função das demais variáveis independentes que podem ser numéricas como dap e altura, e categórica como material genético e projeto. As estimativas foram analisadas empregando estatísticas e análise gráfica de resíduos. A análise gráfica consistiu na inspeção estatística da dispersão dos erros (resíduos) percentuais em relação aos valores observados, bem como na análise do histograma de resíduos. As estatísticas empregadas foram a correlação entre os volumes estimados e observados. O modelo de Schumacher e Hall apresentou a correlação entre valores observados e estimados de 0,993, sendo que a SVM ajustada apresentou correlação de 0,994. A tecnologia das SVM apresentou boa adequação ao problema, sendo esta possível de utilização para previsão volumétrica da produção de florestas plantadas.Revista Árvore2018-01-08T11:12:19Z2018-01-08T11:12:19Z2016-03-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf1806-9088http://dx.doi.org/10.1590/0100-67622016000400012http://www.locus.ufv.br/handle/123456789/16126engv. 40, n. 4, p. 689-693, Jul./Ago. 2016Binoti, Daniel Henrique BredaBinoti, Mayra Luiza Marques da SilvaLeite, Helio GarciaAndrade, Alessandro VivasNogueira, Gilciano SaraivaRomarco, Marcio LelesPitangui, Cristiano Grijóinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T06:59:12Zoai:locus.ufv.br:123456789/16126Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T06:59:12LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Support vector machine to estimate volume of Eucalypt trees
title Support vector machine to estimate volume of Eucalypt trees
spellingShingle Support vector machine to estimate volume of Eucalypt trees
Binoti, Daniel Henrique Breda
Volume equations
Machines learning
Schumacher and hall
title_short Support vector machine to estimate volume of Eucalypt trees
title_full Support vector machine to estimate volume of Eucalypt trees
title_fullStr Support vector machine to estimate volume of Eucalypt trees
title_full_unstemmed Support vector machine to estimate volume of Eucalypt trees
title_sort Support vector machine to estimate volume of Eucalypt trees
author Binoti, Daniel Henrique Breda
author_facet Binoti, Daniel Henrique Breda
Binoti, Mayra Luiza Marques da Silva
Leite, Helio Garcia
Andrade, Alessandro Vivas
Nogueira, Gilciano Saraiva
Romarco, Marcio Leles
Pitangui, Cristiano Grijó
author_role author
author2 Binoti, Mayra Luiza Marques da Silva
Leite, Helio Garcia
Andrade, Alessandro Vivas
Nogueira, Gilciano Saraiva
Romarco, Marcio Leles
Pitangui, Cristiano Grijó
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Binoti, Daniel Henrique Breda
Binoti, Mayra Luiza Marques da Silva
Leite, Helio Garcia
Andrade, Alessandro Vivas
Nogueira, Gilciano Saraiva
Romarco, Marcio Leles
Pitangui, Cristiano Grijó
dc.subject.por.fl_str_mv Volume equations
Machines learning
Schumacher and hall
topic Volume equations
Machines learning
Schumacher and hall
description This study aimed to test the application of the technique of support vector machines (SVM) to estimate the volume of eucalyptus trees. The data used in this study were from of 2307 trees of clonal hybrids (Eucalyptus grandis x Eucalyptus urophylla) located in southern Bahia. In the definition of stratification traditionally used 53 stratums were defined (defined by the stratification project and clone). He set the model of Schumacher and Hall for each stratum. The SVM were constructed to correlate the volume of trees on the basis of other independent variables which may be numeric as dbh and height and categorical as genetic material and design. The estimates were analyzed using statistical and graphical analysis of residues. The analysis consisted of the graphical inspection statistical dispersion of errors (residuals) in relation to the percentage of the values observed, and the analysis of the histogram of residues. The statistics used were the correlation between the observed and estimated volumes. The model of Schumacher and Hall showed the correlation between observed and predicted values of 0,993, and the SVM set of correlated 0,994. The SVM technology showed good adaptation to the problem, and this can use to predict the volumetric production of planted forests.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-23
2018-01-08T11:12:19Z
2018-01-08T11:12:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1806-9088
http://dx.doi.org/10.1590/0100-67622016000400012
http://www.locus.ufv.br/handle/123456789/16126
identifier_str_mv 1806-9088
url http://dx.doi.org/10.1590/0100-67622016000400012
http://www.locus.ufv.br/handle/123456789/16126
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv v. 40, n. 4, p. 689-693, Jul./Ago. 2016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv pdf
application/pdf
dc.publisher.none.fl_str_mv Revista Árvore
publisher.none.fl_str_mv Revista Árvore
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1817559887914205184