Support vector machine to estimate volume of Eucalypt trees
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1590/0100-67622016000400012 http://www.locus.ufv.br/handle/123456789/16126 |
Resumo: | This study aimed to test the application of the technique of support vector machines (SVM) to estimate the volume of eucalyptus trees. The data used in this study were from of 2307 trees of clonal hybrids (Eucalyptus grandis x Eucalyptus urophylla) located in southern Bahia. In the definition of stratification traditionally used 53 stratums were defined (defined by the stratification project and clone). He set the model of Schumacher and Hall for each stratum. The SVM were constructed to correlate the volume of trees on the basis of other independent variables which may be numeric as dbh and height and categorical as genetic material and design. The estimates were analyzed using statistical and graphical analysis of residues. The analysis consisted of the graphical inspection statistical dispersion of errors (residuals) in relation to the percentage of the values observed, and the analysis of the histogram of residues. The statistics used were the correlation between the observed and estimated volumes. The model of Schumacher and Hall showed the correlation between observed and predicted values of 0,993, and the SVM set of correlated 0,994. The SVM technology showed good adaptation to the problem, and this can use to predict the volumetric production of planted forests. |
id |
UFV_a452c8cae7645f9724cbcb9d0580fa44 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/16126 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Support vector machine to estimate volume of Eucalypt treesVolume equationsMachines learningSchumacher and hallThis study aimed to test the application of the technique of support vector machines (SVM) to estimate the volume of eucalyptus trees. The data used in this study were from of 2307 trees of clonal hybrids (Eucalyptus grandis x Eucalyptus urophylla) located in southern Bahia. In the definition of stratification traditionally used 53 stratums were defined (defined by the stratification project and clone). He set the model of Schumacher and Hall for each stratum. The SVM were constructed to correlate the volume of trees on the basis of other independent variables which may be numeric as dbh and height and categorical as genetic material and design. The estimates were analyzed using statistical and graphical analysis of residues. The analysis consisted of the graphical inspection statistical dispersion of errors (residuals) in relation to the percentage of the values observed, and the analysis of the histogram of residues. The statistics used were the correlation between the observed and estimated volumes. The model of Schumacher and Hall showed the correlation between observed and predicted values of 0,993, and the SVM set of correlated 0,994. The SVM technology showed good adaptation to the problem, and this can use to predict the volumetric production of planted forests.O presente trabalho objetivou-se testar a aplicação da técnica de Máquinas vetores de suporte (SVM) para a estimação do volume de árvores de eucalipto. Os dados utilizados neste estudo foram provenientes de cubagens de 2.307 árvores de povoamentos clonais híbridos (Eucalyptus grandis x Eucalyptus urophylla) localizados no sul da Bahia. Na definição de estratificação de cubagens tradicionalmente usada foram definidos 53 estratos (definidos pela estratificação projeto e clone). Ajustou-se o modelo de Schumacher e Hall para cada estrato. As SVM foram construídas para correlacionar o volume das árvores em função das demais variáveis independentes que podem ser numéricas como dap e altura, e categórica como material genético e projeto. As estimativas foram analisadas empregando estatísticas e análise gráfica de resíduos. A análise gráfica consistiu na inspeção estatística da dispersão dos erros (resíduos) percentuais em relação aos valores observados, bem como na análise do histograma de resíduos. As estatísticas empregadas foram a correlação entre os volumes estimados e observados. O modelo de Schumacher e Hall apresentou a correlação entre valores observados e estimados de 0,993, sendo que a SVM ajustada apresentou correlação de 0,994. A tecnologia das SVM apresentou boa adequação ao problema, sendo esta possível de utilização para previsão volumétrica da produção de florestas plantadas.Revista Árvore2018-01-08T11:12:19Z2018-01-08T11:12:19Z2016-03-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf1806-9088http://dx.doi.org/10.1590/0100-67622016000400012http://www.locus.ufv.br/handle/123456789/16126engv. 40, n. 4, p. 689-693, Jul./Ago. 2016Binoti, Daniel Henrique BredaBinoti, Mayra Luiza Marques da SilvaLeite, Helio GarciaAndrade, Alessandro VivasNogueira, Gilciano SaraivaRomarco, Marcio LelesPitangui, Cristiano Grijóinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T06:59:12Zoai:locus.ufv.br:123456789/16126Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T06:59:12LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Support vector machine to estimate volume of Eucalypt trees |
title |
Support vector machine to estimate volume of Eucalypt trees |
spellingShingle |
Support vector machine to estimate volume of Eucalypt trees Binoti, Daniel Henrique Breda Volume equations Machines learning Schumacher and hall |
title_short |
Support vector machine to estimate volume of Eucalypt trees |
title_full |
Support vector machine to estimate volume of Eucalypt trees |
title_fullStr |
Support vector machine to estimate volume of Eucalypt trees |
title_full_unstemmed |
Support vector machine to estimate volume of Eucalypt trees |
title_sort |
Support vector machine to estimate volume of Eucalypt trees |
author |
Binoti, Daniel Henrique Breda |
author_facet |
Binoti, Daniel Henrique Breda Binoti, Mayra Luiza Marques da Silva Leite, Helio Garcia Andrade, Alessandro Vivas Nogueira, Gilciano Saraiva Romarco, Marcio Leles Pitangui, Cristiano Grijó |
author_role |
author |
author2 |
Binoti, Mayra Luiza Marques da Silva Leite, Helio Garcia Andrade, Alessandro Vivas Nogueira, Gilciano Saraiva Romarco, Marcio Leles Pitangui, Cristiano Grijó |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Binoti, Daniel Henrique Breda Binoti, Mayra Luiza Marques da Silva Leite, Helio Garcia Andrade, Alessandro Vivas Nogueira, Gilciano Saraiva Romarco, Marcio Leles Pitangui, Cristiano Grijó |
dc.subject.por.fl_str_mv |
Volume equations Machines learning Schumacher and hall |
topic |
Volume equations Machines learning Schumacher and hall |
description |
This study aimed to test the application of the technique of support vector machines (SVM) to estimate the volume of eucalyptus trees. The data used in this study were from of 2307 trees of clonal hybrids (Eucalyptus grandis x Eucalyptus urophylla) located in southern Bahia. In the definition of stratification traditionally used 53 stratums were defined (defined by the stratification project and clone). He set the model of Schumacher and Hall for each stratum. The SVM were constructed to correlate the volume of trees on the basis of other independent variables which may be numeric as dbh and height and categorical as genetic material and design. The estimates were analyzed using statistical and graphical analysis of residues. The analysis consisted of the graphical inspection statistical dispersion of errors (residuals) in relation to the percentage of the values observed, and the analysis of the histogram of residues. The statistics used were the correlation between the observed and estimated volumes. The model of Schumacher and Hall showed the correlation between observed and predicted values of 0,993, and the SVM set of correlated 0,994. The SVM technology showed good adaptation to the problem, and this can use to predict the volumetric production of planted forests. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-23 2018-01-08T11:12:19Z 2018-01-08T11:12:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1806-9088 http://dx.doi.org/10.1590/0100-67622016000400012 http://www.locus.ufv.br/handle/123456789/16126 |
identifier_str_mv |
1806-9088 |
url |
http://dx.doi.org/10.1590/0100-67622016000400012 http://www.locus.ufv.br/handle/123456789/16126 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
v. 40, n. 4, p. 689-693, Jul./Ago. 2016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
pdf application/pdf |
dc.publisher.none.fl_str_mv |
Revista Árvore |
publisher.none.fl_str_mv |
Revista Árvore |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1817559887914205184 |