Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/41999 |
Resumo: | Machine learning approaches have been crucial for addressing current challenges in precision livestock, as it presents new tools for developing large scale predictive analytics in many fields including the area of sensor technology. In this context, the objectives of our study were to evaluate the following strategies of cross-validation used to predict grazing and not-grazing activities in grazing cattle. The machine learning approaches were generalizer linear regression (GLR), random forest (RF) and artificial neural network (ANN) as well as the cross-validation strategies evaluated were: 20% of the dataset randomly exclude to build the validation dataset (holdout), leave-one-animal-out (LOAO), and leave-one-day-out (LODO). Six Nellore bulls, 345 ± 21 kg body weight, were kept on pasture of Marandu Palisadegrass and had accelerometer and gyroscope sensor attached on neck. Animal behavior was registered through visual observation within a period of 10 hours for 15 days. The gyroscope record data were not used because a larger gap in a datapoint was observed. The overall accuracy of GLR, RF, and ANN were respectively 57.1%, 76.9%, and 74.2% in holdout validation, 53.1%, 58.7% and 72% in LOAO and 47.4%, 58.8% and 59.7% in LODO. GLR was not adequate model to predict animal behavior using our dataset. RF and ANN are more efficient to process complex dataset as these. Clearly, the validation strategy inferring in accuracy results and this is an important point in data analysis. Low values validation accuracy results in LODO shown us that predictive models are not adequate to use in different conditions of pasture. LOAO with ANN was the best validation strategy and it could predict animal behavior of different animals without used in predict model. Holdout validation, widely used in several similar studies, present an inflate accuracy values due to environmental conditions (e.g. animal or grazing conditions) that influence in dataset using in training and the validation dataset of the model. |
id |
UFLA_86865a571b98fdfcf27ff614536cb6d2 |
---|---|
oai_identifier_str |
oai:localhost:1/41999 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensorsAbordagem de técnicas de machine learning e estratégias de validação para predição de comportamento de pastejo de bovinos de corte utilizando sensores vestíveisAccelerometerAnimal behaviorCross-validationGrazingPrecision-livestockAcelerômetroComportamento animalCrossvalidaçãoPecuária de precisãoPastejoZootecniaMachine learning approaches have been crucial for addressing current challenges in precision livestock, as it presents new tools for developing large scale predictive analytics in many fields including the area of sensor technology. In this context, the objectives of our study were to evaluate the following strategies of cross-validation used to predict grazing and not-grazing activities in grazing cattle. The machine learning approaches were generalizer linear regression (GLR), random forest (RF) and artificial neural network (ANN) as well as the cross-validation strategies evaluated were: 20% of the dataset randomly exclude to build the validation dataset (holdout), leave-one-animal-out (LOAO), and leave-one-day-out (LODO). Six Nellore bulls, 345 ± 21 kg body weight, were kept on pasture of Marandu Palisadegrass and had accelerometer and gyroscope sensor attached on neck. Animal behavior was registered through visual observation within a period of 10 hours for 15 days. The gyroscope record data were not used because a larger gap in a datapoint was observed. The overall accuracy of GLR, RF, and ANN were respectively 57.1%, 76.9%, and 74.2% in holdout validation, 53.1%, 58.7% and 72% in LOAO and 47.4%, 58.8% and 59.7% in LODO. GLR was not adequate model to predict animal behavior using our dataset. RF and ANN are more efficient to process complex dataset as these. Clearly, the validation strategy inferring in accuracy results and this is an important point in data analysis. Low values validation accuracy results in LODO shown us that predictive models are not adequate to use in different conditions of pasture. LOAO with ANN was the best validation strategy and it could predict animal behavior of different animals without used in predict model. Holdout validation, widely used in several similar studies, present an inflate accuracy values due to environmental conditions (e.g. animal or grazing conditions) that influence in dataset using in training and the validation dataset of the model.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)O uso de técnicas de machine learning tem sido importante para enfrentar os desafios atuais na pecuária de precisão, pois apresenta novas ferramentas para análise com dados preditivos em larga escala em diversos campos, incluindo a de tecnologia de sensores. Nesse contexto, o objetivo do estudo foi avaliar abordagens de machine leaning e estratégias de validação para predição de tempo de pastejo com base em dados gerados por sensores do tipo acelerômetro e giroscópio em bovinos de corte. As abordagens de machine learning avaliadas foram generalizer linear regression (GLR), random forest (RF) e artificial neural network (ANN), e as estratégias de validação foram: remover 20% dos dados aleatoriamente para validação (holdout), remover todos os dados de um animal por vez para validação (LOAO) e remover os dados de cada um dos últimos 5 dias da avaliação comportamental para validação (LODO). Seis bovinos Nelore de 345 ± 21 kg peso corporal, foram mantidos em pastagem de B. brizantha cv. Marandu com sensores acelerômetro e giroscópio acoplados. O comportamento dos animais foi registrado visualmente em um período de 10 horas durante 15 dias. Os dados obtidos pelos giroscópios não foram utilizados, devido a intervalos muito longos de registro dos sensores resultando em um banco de dados incompleto. Os valores de acurácia dos modelos GLR, RF e ANN foram, respectivamente: 57,1%, 76,9% e 74,2% para validação holdout, 53,1% 58,7% e 72% para validação LOAO, e 47,4%, 58,5% e 59,7% para a validação LODO. O modelo de predição linear GLR não foi adequado para predição do comportamento animal a partir de dados de sensores. As ferramentas de machine learning RF e ANN são mais adequadas para processarem dados complexos como esses. Claramente, a estratégia de validação interfere na acurácia do modelo preditivo e isso deve ser levado em consideração na interpretação de dados da literatura. Os baixos valores de acurácia na validação LODO mostram que modelos preditivos não funcionam adequadamente em condições de pastejo diferentes das utilizadas no desenvolvimento do modelo. O modelo validado por LOAO e desenvolvido com ANN atingiu valor de acurácia promissor, o que sugere que, com a correta ferramenta de machine learning, é possível predizer comportamento de pastejo de novos animais, que não foram utilizados no desenvolvimento do modelo. A validação holdout, utilizada na maioria dos estudos com sensores, apresenta valores inflados em decorrência de condições de ambiente (e.g. animal ou condições de pastejo) que influenciam da mesma forma os dados do conjunto de treinamento e de validação do modelo.Universidade Federal de LavrasPrograma de Pós-Graduação em ZootecniaUFLAbrasilDepartamento de ZootecniaDanés, Marina de Arruda CamargoCasagrande, Daniel RumeDanés, Marina de Arruda CamargoBernardes, Thiago FernandesPereira, Luiz Gustavo RibeiroLara, Marcio André StefanelliRibeiro, Leonardo Augusto Coelho2020-07-16T13:51:58Z2020-07-16T13:51:58Z2020-07-162020-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfRIBEIRO, L. A. C. Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors. 2020. 65 p. Dissertação (Mestrado em Zootecnia) – Universidade Federal de Lavras, Lavras, 2020.http://repositorio.ufla.br/jspui/handle/1/41999enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2020-07-16T13:51:58Zoai:localhost:1/41999Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2020-07-16T13:51:58Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors Abordagem de técnicas de machine learning e estratégias de validação para predição de comportamento de pastejo de bovinos de corte utilizando sensores vestíveis |
title |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors |
spellingShingle |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors Ribeiro, Leonardo Augusto Coelho Accelerometer Animal behavior Cross-validation Grazing Precision-livestock Acelerômetro Comportamento animal Crossvalidação Pecuária de precisão Pastejo Zootecnia |
title_short |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors |
title_full |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors |
title_fullStr |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors |
title_full_unstemmed |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors |
title_sort |
Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors |
author |
Ribeiro, Leonardo Augusto Coelho |
author_facet |
Ribeiro, Leonardo Augusto Coelho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Danés, Marina de Arruda Camargo Casagrande, Daniel Rume Danés, Marina de Arruda Camargo Bernardes, Thiago Fernandes Pereira, Luiz Gustavo Ribeiro Lara, Marcio André Stefanelli |
dc.contributor.author.fl_str_mv |
Ribeiro, Leonardo Augusto Coelho |
dc.subject.por.fl_str_mv |
Accelerometer Animal behavior Cross-validation Grazing Precision-livestock Acelerômetro Comportamento animal Crossvalidação Pecuária de precisão Pastejo Zootecnia |
topic |
Accelerometer Animal behavior Cross-validation Grazing Precision-livestock Acelerômetro Comportamento animal Crossvalidação Pecuária de precisão Pastejo Zootecnia |
description |
Machine learning approaches have been crucial for addressing current challenges in precision livestock, as it presents new tools for developing large scale predictive analytics in many fields including the area of sensor technology. In this context, the objectives of our study were to evaluate the following strategies of cross-validation used to predict grazing and not-grazing activities in grazing cattle. The machine learning approaches were generalizer linear regression (GLR), random forest (RF) and artificial neural network (ANN) as well as the cross-validation strategies evaluated were: 20% of the dataset randomly exclude to build the validation dataset (holdout), leave-one-animal-out (LOAO), and leave-one-day-out (LODO). Six Nellore bulls, 345 ± 21 kg body weight, were kept on pasture of Marandu Palisadegrass and had accelerometer and gyroscope sensor attached on neck. Animal behavior was registered through visual observation within a period of 10 hours for 15 days. The gyroscope record data were not used because a larger gap in a datapoint was observed. The overall accuracy of GLR, RF, and ANN were respectively 57.1%, 76.9%, and 74.2% in holdout validation, 53.1%, 58.7% and 72% in LOAO and 47.4%, 58.8% and 59.7% in LODO. GLR was not adequate model to predict animal behavior using our dataset. RF and ANN are more efficient to process complex dataset as these. Clearly, the validation strategy inferring in accuracy results and this is an important point in data analysis. Low values validation accuracy results in LODO shown us that predictive models are not adequate to use in different conditions of pasture. LOAO with ANN was the best validation strategy and it could predict animal behavior of different animals without used in predict model. Holdout validation, widely used in several similar studies, present an inflate accuracy values due to environmental conditions (e.g. animal or grazing conditions) that influence in dataset using in training and the validation dataset of the model. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-16T13:51:58Z 2020-07-16T13:51:58Z 2020-07-16 2020-03-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
RIBEIRO, L. A. C. Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors. 2020. 65 p. Dissertação (Mestrado em Zootecnia) – Universidade Federal de Lavras, Lavras, 2020. http://repositorio.ufla.br/jspui/handle/1/41999 |
identifier_str_mv |
RIBEIRO, L. A. C. Approaches of machine learning and validation strategies to predict grazing behavior in beef cattle using sensors. 2020. 65 p. Dissertação (Mestrado em Zootecnia) – Universidade Federal de Lavras, Lavras, 2020. |
url |
http://repositorio.ufla.br/jspui/handle/1/41999 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Zootecnia UFLA brasil Departamento de Zootecnia |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Zootecnia UFLA brasil Departamento de Zootecnia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439314816860160 |