Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros

Detalhes bibliográficos
Autor(a) principal: Silva, Lázaro Henrique da
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/47985
Resumo: The use of new technology has contributed to the increase in the efficiency of cattle production. Still, little of this technology has been used in pasture production, the basis of livestock in Brazil. With this in mind, the objective of this work was to evaluate different predictive models, validation strategies, and dataset compositions for the prediction of ingestive behavior of grazing cattle based on data generated by an accelerometer-type sensor. The experiment was carried out in intercropped pasture of Urochloa brizantha cv Marandu and Arachis pintoi. To test the change in ingestive behavior during lowering, the area was managed in a rotational grazing system, with an entry height of 25 cm and three exit heights (20, 15, and 10 cm). Observations took place over nine months, on non-consecutive days, for 12 hours a day. The predictive models used were: generalized linear regression (GLM), random forest (RF), gradient boosting (GB), and artificial neural network (ANN). The validations used were: holdout, leave-animals-out (LAO), leave-days-out (LDO), 10 cm leave-height-out (LHO10) and 25 cm leave-height-out (LHO25). Two datasets were used. The first was the PRO dataset, with grazing, rumination, and idle observations; the second was the PNP dataset, with grazing and non-grazing observations and an external database. Finally, the parameters used to evaluate the predictive models were: accuracy, error rate (for the PNP dataset), sensitivity, specificity, positive predicted value, and negative predicted value. For the PRO dataset, the best predictive model was the ANN, mainly in predicting grazing behavior, with an accuracy of 60.5% (LAO), 65.3% (LDO), 71.8% (holdout), 60 .5% (LHO10), and 63.2% (LHO25). In the PNP dataset, the best predictive models were the ANN, with an accuracy of 63.6% (LAO), 65.8% (LDO), 73.0% (holdout), 60.8% (LHO10) and 64 .9% (LHO25), and the RF, with an accuracy of 62.5% (LAO), 64.4% (LDO), 73.3% (holdout), 59.9% (LHO10) and 61.7% (LHO25). In general, the models were more efficient in predicting only two behaviors than in predicting three behaviors, mainly due to the difficulty in predicting idle behavior, with sensitivity below 26% in almost all validation strategies used. Another important point to consider is that the adopted validation strategy can interfere with the results of the evaluation parameters, as observed with the holdout, which had greater accuracy than other validation strategies when inflating the predictive models. The external dataset exposed the models to a new situation, where the holdout strategy was not superior to the others, with an accuracy of 57.5% (LAO), 59.4% (LDO), and 59.4% (holdout), showing the need to expose predictive models to new situations, such as the entry of new animals into the paddock and to different pasture structures.
id UFLA_cd07bd38b8e716a340488076c5ff0e58
oai_identifier_str oai:localhost:1/47985
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetrosPrediction of ingestive behavior of grazing cattle during canopy lowering using accelerometer dataComportamento animalBovinos - Comportamento ingestivoPecuária de precisãoPastejoValidação cruzadaModelos preditivosAcelerômetroAnimal behaviorCattle - Ingestive behaviorPrecision-livestockGrazingValidationPreditive modelsZootecniaThe use of new technology has contributed to the increase in the efficiency of cattle production. Still, little of this technology has been used in pasture production, the basis of livestock in Brazil. With this in mind, the objective of this work was to evaluate different predictive models, validation strategies, and dataset compositions for the prediction of ingestive behavior of grazing cattle based on data generated by an accelerometer-type sensor. The experiment was carried out in intercropped pasture of Urochloa brizantha cv Marandu and Arachis pintoi. To test the change in ingestive behavior during lowering, the area was managed in a rotational grazing system, with an entry height of 25 cm and three exit heights (20, 15, and 10 cm). Observations took place over nine months, on non-consecutive days, for 12 hours a day. The predictive models used were: generalized linear regression (GLM), random forest (RF), gradient boosting (GB), and artificial neural network (ANN). The validations used were: holdout, leave-animals-out (LAO), leave-days-out (LDO), 10 cm leave-height-out (LHO10) and 25 cm leave-height-out (LHO25). Two datasets were used. The first was the PRO dataset, with grazing, rumination, and idle observations; the second was the PNP dataset, with grazing and non-grazing observations and an external database. Finally, the parameters used to evaluate the predictive models were: accuracy, error rate (for the PNP dataset), sensitivity, specificity, positive predicted value, and negative predicted value. For the PRO dataset, the best predictive model was the ANN, mainly in predicting grazing behavior, with an accuracy of 60.5% (LAO), 65.3% (LDO), 71.8% (holdout), 60 .5% (LHO10), and 63.2% (LHO25). In the PNP dataset, the best predictive models were the ANN, with an accuracy of 63.6% (LAO), 65.8% (LDO), 73.0% (holdout), 60.8% (LHO10) and 64 .9% (LHO25), and the RF, with an accuracy of 62.5% (LAO), 64.4% (LDO), 73.3% (holdout), 59.9% (LHO10) and 61.7% (LHO25). In general, the models were more efficient in predicting only two behaviors than in predicting three behaviors, mainly due to the difficulty in predicting idle behavior, with sensitivity below 26% in almost all validation strategies used. Another important point to consider is that the adopted validation strategy can interfere with the results of the evaluation parameters, as observed with the holdout, which had greater accuracy than other validation strategies when inflating the predictive models. The external dataset exposed the models to a new situation, where the holdout strategy was not superior to the others, with an accuracy of 57.5% (LAO), 59.4% (LDO), and 59.4% (holdout), showing the need to expose predictive models to new situations, such as the entry of new animals into the paddock and to different pasture structures.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)O uso de novas tecnologia tem contribuído para o aumento na eficiência da produção bovina, porém pouco dessa tecnologia tem sido usada na produção a pasto, base da pecuária no Brasil. Pensando nisso, o objetivo desse trabalho foi avaliar diferentes modelos preditivos, estratégias de validação e composições do conjunto de dados para a predição do comportamento ingestivo de bovinos a pasto, com base em dados gerados pelo sensor do tipo acelerômetro. O experimento foi conduzido em pasto consorciado de braquiária brizantha e amendoim forrageiro. Para testar a mudança do comportamento ingestivo ao longo do rebaixamento, a área foi manejada no sistema rotativo de pastejo, com altura de entrada de 25 cm e três alturas de saída (20, 15 e 10 cm). As observações ocorreram ao longo de nove meses, em dias não consecutivos, durante 12 horas por dia. Os modelos preditivos utilizados foram: generalizer linear regression (GLR), random forest (RF), gradiente boosting (GB) e artificial neural network (ANN). As validações utilizadas foram: holdout, leave-animals-out (LAO), leave-days-out (LDO), leave-height-out de 10 cm (LHO10) e leave-height-out de 25 cm (LHO25). Foram utilizados dois conjuntos de dados, o primeiro foi o conjunto de dados PRO, com as observações de pastejo, ruminação e ócio, o segundo foi o conjunto de dados PNP, com as observações de pastejo e não pastejo, e um banco de dados externo. Por fim, os parâmetros usados para a avaliação dos modelos preditivos foram: acurácia, taxa de erro (para o conjunto de dados PNP), sensibilidade, especificidade, valor predito positivo e valor predito negativo. Para o conjunto de dados PRO, o melhor modelo preditivo foi o ANN, principalmente ao predizer o comportamento de pastejo, com acurácia de 60,5% (LAO), 65,3% (LDO), 71,8% (holdout) 60,5% (LHO10) e 63,2% (LHO25). Já no conjunto de dados PNP os melhores modelos preditivos foram o ANN, com acurácia de 63,6% (LAO), 65,8% (LDO), 73,0% (holdout), 60,8% (LHO10) e 64,9% (LHO25), e o RF, com acurácia de 62,5% (LAO), 64,4% (LDO), 73,3% (holdout), 59,9% (LHO10) e 61,7% (LHO25). De maneira geral, os modelos foram mais eficientes ao predizer apenas dois comportamentos do que ao predizer três comportamentos, principalmente pela dificuldade em predizer o comportamento de ócio, com sensibilidade abaixo de 26% em quase todas as estratégias de validação utilizadas. Outro ponto importante a se considerar é que a estratégia de validação adotada pode interferir nos resultados dos parâmetros de avaliação, como observado com a holdout, que teve acurácia superior as demais estratégias de validação ao inflar os modelos preditivos. O conjunto de dados externo expôs os modelos a uma nova situação, onde a estratégia holdout não foi superior as demais, com acurácia de 57,5% (LAO), 59,4% (LDO) e 59,4% (holdout), mostrando a necessidade de expor os modelos preditivos a situações novas, como a entrada de novos animais no piquete e a diferentes estruturas do pasto.Universidade Federal de LavrasPrograma de Pós-Graduação em ZootecniaUFLAbrasilDepartamento de ZootecniaDanes, Marina de Arruda CamargoCasagrande, Daniel RumeDanés, Marina de Arruda CamargoPaiva, Adenilson JoséBresolin, TiagoSilva, Lázaro Henrique da2021-08-30T16:28:55Z2021-08-30T16:28:55Z2021-08-302021-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSILVA, L. H. da. Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros. 2021. 99 p. Dissertação (Mestrado em Zootecnia) – Universidade Federal de Lavras, Lavras, 2021.http://repositorio.ufla.br/jspui/handle/1/47985porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2022-09-12T21:34:44Zoai:localhost:1/47985Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2022-09-12T21:34:44Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros
Prediction of ingestive behavior of grazing cattle during canopy lowering using accelerometer data
title Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros
spellingShingle Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros
Silva, Lázaro Henrique da
Comportamento animal
Bovinos - Comportamento ingestivo
Pecuária de precisão
Pastejo
Validação cruzada
Modelos preditivos
Acelerômetro
Animal behavior
Cattle - Ingestive behavior
Precision-livestock
Grazing
Validation
Preditive models
Zootecnia
title_short Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros
title_full Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros
title_fullStr Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros
title_full_unstemmed Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros
title_sort Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros
author Silva, Lázaro Henrique da
author_facet Silva, Lázaro Henrique da
author_role author
dc.contributor.none.fl_str_mv Danes, Marina de Arruda Camargo
Casagrande, Daniel Rume
Danés, Marina de Arruda Camargo
Paiva, Adenilson José
Bresolin, Tiago
dc.contributor.author.fl_str_mv Silva, Lázaro Henrique da
dc.subject.por.fl_str_mv Comportamento animal
Bovinos - Comportamento ingestivo
Pecuária de precisão
Pastejo
Validação cruzada
Modelos preditivos
Acelerômetro
Animal behavior
Cattle - Ingestive behavior
Precision-livestock
Grazing
Validation
Preditive models
Zootecnia
topic Comportamento animal
Bovinos - Comportamento ingestivo
Pecuária de precisão
Pastejo
Validação cruzada
Modelos preditivos
Acelerômetro
Animal behavior
Cattle - Ingestive behavior
Precision-livestock
Grazing
Validation
Preditive models
Zootecnia
description The use of new technology has contributed to the increase in the efficiency of cattle production. Still, little of this technology has been used in pasture production, the basis of livestock in Brazil. With this in mind, the objective of this work was to evaluate different predictive models, validation strategies, and dataset compositions for the prediction of ingestive behavior of grazing cattle based on data generated by an accelerometer-type sensor. The experiment was carried out in intercropped pasture of Urochloa brizantha cv Marandu and Arachis pintoi. To test the change in ingestive behavior during lowering, the area was managed in a rotational grazing system, with an entry height of 25 cm and three exit heights (20, 15, and 10 cm). Observations took place over nine months, on non-consecutive days, for 12 hours a day. The predictive models used were: generalized linear regression (GLM), random forest (RF), gradient boosting (GB), and artificial neural network (ANN). The validations used were: holdout, leave-animals-out (LAO), leave-days-out (LDO), 10 cm leave-height-out (LHO10) and 25 cm leave-height-out (LHO25). Two datasets were used. The first was the PRO dataset, with grazing, rumination, and idle observations; the second was the PNP dataset, with grazing and non-grazing observations and an external database. Finally, the parameters used to evaluate the predictive models were: accuracy, error rate (for the PNP dataset), sensitivity, specificity, positive predicted value, and negative predicted value. For the PRO dataset, the best predictive model was the ANN, mainly in predicting grazing behavior, with an accuracy of 60.5% (LAO), 65.3% (LDO), 71.8% (holdout), 60 .5% (LHO10), and 63.2% (LHO25). In the PNP dataset, the best predictive models were the ANN, with an accuracy of 63.6% (LAO), 65.8% (LDO), 73.0% (holdout), 60.8% (LHO10) and 64 .9% (LHO25), and the RF, with an accuracy of 62.5% (LAO), 64.4% (LDO), 73.3% (holdout), 59.9% (LHO10) and 61.7% (LHO25). In general, the models were more efficient in predicting only two behaviors than in predicting three behaviors, mainly due to the difficulty in predicting idle behavior, with sensitivity below 26% in almost all validation strategies used. Another important point to consider is that the adopted validation strategy can interfere with the results of the evaluation parameters, as observed with the holdout, which had greater accuracy than other validation strategies when inflating the predictive models. The external dataset exposed the models to a new situation, where the holdout strategy was not superior to the others, with an accuracy of 57.5% (LAO), 59.4% (LDO), and 59.4% (holdout), showing the need to expose predictive models to new situations, such as the entry of new animals into the paddock and to different pasture structures.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-30T16:28:55Z
2021-08-30T16:28:55Z
2021-08-30
2021-07-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, L. H. da. Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros. 2021. 99 p. Dissertação (Mestrado em Zootecnia) – Universidade Federal de Lavras, Lavras, 2021.
http://repositorio.ufla.br/jspui/handle/1/47985
identifier_str_mv SILVA, L. H. da. Predição do comportamento ingestivo de bovinos em pastejo ao longo do rebaixamento do dossel a partir de dados de acelerômetros. 2021. 99 p. Dissertação (Mestrado em Zootecnia) – Universidade Federal de Lavras, Lavras, 2021.
url http://repositorio.ufla.br/jspui/handle/1/47985
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Zootecnia
UFLA
brasil
Departamento de Zootecnia
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Zootecnia
UFLA
brasil
Departamento de Zootecnia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439034421346304