Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Michelle Carlota
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/12940
Resumo: Pathogenic bacteria such as Escherichia coli Enteropathogenic and Enterotoxigenic may cause diarrhea or even death in children and immunoincompetent patients. As a foodborne disease, mostly from animal resources, the microbiological control is from great relevance. Food preservatives usually control these bacteria by inhibition or death. Although, these additives may cause negative impacts on public health. Natural compounds shows up as alternative to common chemical substances. Major compound of essential oils has known and broad-spectrum antimicrobial activity against foodborne pathogens. However, when used in sublethal doses it may induce physiological response in bacteria, which reduce susceptibility to these compounds or even other stressor agents. By these reasons, it becomes necessary to verify EPEC and ETEC adaptive and/or cross-adaptive capacity to major compounds of essential oils. Initially, pH of minimum inhibition and growth were determinated and minimum bactericidal concentration (MBC) of cinnamaldehyde, eugenol and citral against EPEC and ETEC. Adaptive capacity of EPEC and ETEC exposed to major compounds and acid stress were tested and cross-adaptation between major compound and acid stress were evaluated as well. EPEC and ETEC cells were grown in major compound or pH of minimum growth exposition during 6 hours at 37ºC on adaptation and cross-adaptation tests. After this, 10 8 CFU/mL standard suspensions of EPEC and ETEC were centrifuged and resuspended in Brain-heart infusion broth (BHI). In adaptation tests, sublethal doses of 1/4, 1/8 and 1/16 MBC of cinnamaldehyde, eugenol or citral and 0.5% of Tween 80 were added on BHI for previous exposition. EPEC and ETEC standard suspension cells were incubated at 37ºC for 24 hours under 0.5; 1.0; 1.2; 1.4; 1.6; 1.8 and 2.0 MBC of major compounds. After this period, cells were plated on Tryptic soy agar (TSA) and incubated at 37ºC for 24h to evaluate adaptive response. In cross-adaptation tests between acid stress and major compounds, EPEC and ETEC standard cells were grown in BHI with addition of 0.5% Tween 80 and major compounds at 0.5 to 2.0 MBC concentrations for 24h at 37ºC. Then, cells were plated on TSA and incubated at 37ºC for 24h. ETEC and EPEC previously exposed to major compound and pH were grown in BHI with pH of: 6.0; 5.0; 4.5; 4.0; 3.5; 3.0; 2.5; 2.0 using lactic acid as adjustment, followed by TSA plating and incubation. The pH of minimum inhibition and growth were 4.0 and 4.5, respectively for EPEC and ETEC. Cinnamaldehyde, eugenol and citral MBC were 0.125, 1.0 and 1,0%, respectively, for both pathotypes. Adaptation and cross-adaptation tests demonstrated that EPEC and ETEC pre-exposition to sublethal doses of major compound and pH of minimum growth promoted bacterial resistance. Therefore, cinnamaldehyde, eugenol and citral are potential option to be used as industrial antimicrobial sanitizers while in appropriate concentrations.
id UFLA_b875cb9d45770cea3e1367e00648fe11
oai_identifier_str oai:localhost:1/12940
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácidoAdaptation and cross-adaptation of enterotoxigenic and enteropathogenic escherichia coli to major compounds of essential oils and to acid stressEscherichia coliAdaptação cruzadaAntimicrobiano naturalÓleos essenciaisCross-adaptationNatural antimicrobialsEssencial oilsMicrobiologia AgrícolaPathogenic bacteria such as Escherichia coli Enteropathogenic and Enterotoxigenic may cause diarrhea or even death in children and immunoincompetent patients. As a foodborne disease, mostly from animal resources, the microbiological control is from great relevance. Food preservatives usually control these bacteria by inhibition or death. Although, these additives may cause negative impacts on public health. Natural compounds shows up as alternative to common chemical substances. Major compound of essential oils has known and broad-spectrum antimicrobial activity against foodborne pathogens. However, when used in sublethal doses it may induce physiological response in bacteria, which reduce susceptibility to these compounds or even other stressor agents. By these reasons, it becomes necessary to verify EPEC and ETEC adaptive and/or cross-adaptive capacity to major compounds of essential oils. Initially, pH of minimum inhibition and growth were determinated and minimum bactericidal concentration (MBC) of cinnamaldehyde, eugenol and citral against EPEC and ETEC. Adaptive capacity of EPEC and ETEC exposed to major compounds and acid stress were tested and cross-adaptation between major compound and acid stress were evaluated as well. EPEC and ETEC cells were grown in major compound or pH of minimum growth exposition during 6 hours at 37ºC on adaptation and cross-adaptation tests. After this, 10 8 CFU/mL standard suspensions of EPEC and ETEC were centrifuged and resuspended in Brain-heart infusion broth (BHI). In adaptation tests, sublethal doses of 1/4, 1/8 and 1/16 MBC of cinnamaldehyde, eugenol or citral and 0.5% of Tween 80 were added on BHI for previous exposition. EPEC and ETEC standard suspension cells were incubated at 37ºC for 24 hours under 0.5; 1.0; 1.2; 1.4; 1.6; 1.8 and 2.0 MBC of major compounds. After this period, cells were plated on Tryptic soy agar (TSA) and incubated at 37ºC for 24h to evaluate adaptive response. In cross-adaptation tests between acid stress and major compounds, EPEC and ETEC standard cells were grown in BHI with addition of 0.5% Tween 80 and major compounds at 0.5 to 2.0 MBC concentrations for 24h at 37ºC. Then, cells were plated on TSA and incubated at 37ºC for 24h. ETEC and EPEC previously exposed to major compound and pH were grown in BHI with pH of: 6.0; 5.0; 4.5; 4.0; 3.5; 3.0; 2.5; 2.0 using lactic acid as adjustment, followed by TSA plating and incubation. The pH of minimum inhibition and growth were 4.0 and 4.5, respectively for EPEC and ETEC. Cinnamaldehyde, eugenol and citral MBC were 0.125, 1.0 and 1,0%, respectively, for both pathotypes. Adaptation and cross-adaptation tests demonstrated that EPEC and ETEC pre-exposition to sublethal doses of major compound and pH of minimum growth promoted bacterial resistance. Therefore, cinnamaldehyde, eugenol and citral are potential option to be used as industrial antimicrobial sanitizers while in appropriate concentrations.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Escherichia coli enteropatogênica e a enterotoxigênica são bactérias patogênicas que podem causar desde simples diarreia até a morte em crianças e indivíduos imunocomprometidos. Por serem veiculadas por alimentos, principalmente os de origem animal, seu controle nos alimentos é de grande importância. A inibição ou a morte dessas bactérias podem ser causadas pela adição de conservantes ao alimento. Entretanto, essas substâncias, muitas vezes, podem causar impactos negativos na saúde do consumidor. Assim, substâncias naturais têm sido sugeridas como alternativa aos conservantes químicos. Os componentes majoritários de óleos essenciais apresentam elevada atividade antimicrobiana e de amplo espectro contra patógenos alimentares. Entretanto, quando utilizados em concentrações subletais, podem induzir a respostas fisiológicas bacterianas, levando à diminuição de sua suscetibilidade ao componente ou a outros agentes estressantes. Diante do exposto, verificar a capacidade de adaptação e/ou a adaptação cruzada de EPEC e ETEC a componentes majoritários de óleos essenciais tornase necessário. Foram determinados, inicialmente, o pH mínimo inibitório e mínimo de crescimento e as concentrações mínimas bactericidas (CMB) dos componentes majoritários cinamaldeído, eugenol e citral sobre EPEC e ETEC. Em seguida, a capacidade adaptativa de EPEC e ETEC aos componentes majoritários e ao estresse ácido, bem como sua adaptação cruzada entre os componentes majoritários e estresse ácido, foi avaliada. Tanto para a avaliação de adaptação quanto adaptação cruzada foram realizados cultivos de EPEC e ETEC em presença de componentes majoritários e pH mínimo de crescimento, a 37 ºC, por 6 horas. Após essa etapa, as células bacterianas foram recuperadas por centrifugação e ressuspensas em caldo BHI, após padronização da suspensão em 10 8 UFC/mL. Para a adaptação de EPEC e ETEC a cinamaldeído, eugenol e citral, foi realizado o cultivo das células em caldo BHI acrescido de 0,5% de Tween 80 e de 1/4, 1/8 ou 1/16 das CMB de cinamaldeído, eugenol ou citral. Alíquotas da suspensão padronizada foram inoculadas em caldo BHI acrescido de 0,5% de Tween 80 e os componentes majoritários nas concentrações de 0,5CMB; CMB; 1,2CMB; 1,4CMB; 1,6CMB; 1,8CMB e 2CMB e incubadas, a 37 ºC, por 24 horas. Após esse período, foi realizado o plaqueamento em TSA e incubação, a 37 ºC, por 24 horas. Para avaliação da adaptação cruzada entre estresse ácido e componentes majoritários, alíquotas das suspensões padronizadas de EPEC e ETEC foram inoculadas em caldo BHI acrescido de 0,5% de Tween 80 e compostos majoritários em concentrações variando de 0,5xCMB a 2xCMB. Após incubação a 37 ºC, por 24 horas, alíquotas das culturas foram plaqueadas em TSA e incubadas, a 37 ºC, por 24 horas. Para a avaliação da adaptação cruzada entre componentes majoritários e pH, as bactérias, previamente cultivadas em concentrações subletais dos componentes majoritários, foram, após recuperação e padronização da suspensão em 10 8 UFC/mL, inoculadas em caldo BHI com pH ajustado com ácido lático em pH 6,0; 5,0; 4,5; 4,0; 3,5; 3,0; 2,5 e 2,0. Após incubação a 37 ºC, por 24 horas, alíquotas de 10 µl das culturas foram plaqueadas em TSA e incubadas, a 37 ºC, por 24 horas. O pH mínimo inibitório e o mínimo de crescimento foram de 4,0 e 4,5, respectivamente, para ambas as cepas utilizadas. As CMB para cinamaldeído, eugenol e citral foram de 0,125%, 1,0% e 1,0%, respectivamente, tanto para EPEC quanto para ETEC. Os resultados obtidos demonstraram que a pré-exposição de EPEC e ETEC às concentrações subletais dos componentes majoritários e ao pH mínimo de crescimento promoveu a adaptação e a adaptação cruzada das bactérias. Portanto, cinamaldeído, eugenol e citral são opções promissoras de antimicrobianos e sanitizantes a serem utilizados na indústria de alimentos, desde que em concentrações adequadas.Universidade Federal de LavrasPrograma de Pós-Graduação em Microbiologia AgrícolaUFLAbrasilDepartamento de BiologiaPiccoli, Roberta HilsdorfPaula, Nélio Ranieli Ferreira deSouza, Angélica Cristina deGonçalves, Michelle Carlota2017-05-10T17:20:35Z2017-05-10T17:20:35Z2017-05-052017-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfGONÇALVES, M. C. et al. Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido. 2017. 61 p. Dissertação (Mestrado em Microbiologia Agrícola)-Universidade Federal de Lavras, Lavras, 2017.http://repositorio.ufla.br/jspui/handle/1/12940porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2017-05-10T17:20:35Zoai:localhost:1/12940Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2017-05-10T17:20:35Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido
Adaptation and cross-adaptation of enterotoxigenic and enteropathogenic escherichia coli to major compounds of essential oils and to acid stress
title Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido
spellingShingle Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido
Gonçalves, Michelle Carlota
Escherichia coli
Adaptação cruzada
Antimicrobiano natural
Óleos essenciais
Cross-adaptation
Natural antimicrobials
Essencial oils
Microbiologia Agrícola
title_short Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido
title_full Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido
title_fullStr Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido
title_full_unstemmed Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido
title_sort Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido
author Gonçalves, Michelle Carlota
author_facet Gonçalves, Michelle Carlota
author_role author
dc.contributor.none.fl_str_mv Piccoli, Roberta Hilsdorf
Paula, Nélio Ranieli Ferreira de
Souza, Angélica Cristina de
dc.contributor.author.fl_str_mv Gonçalves, Michelle Carlota
dc.subject.por.fl_str_mv Escherichia coli
Adaptação cruzada
Antimicrobiano natural
Óleos essenciais
Cross-adaptation
Natural antimicrobials
Essencial oils
Microbiologia Agrícola
topic Escherichia coli
Adaptação cruzada
Antimicrobiano natural
Óleos essenciais
Cross-adaptation
Natural antimicrobials
Essencial oils
Microbiologia Agrícola
description Pathogenic bacteria such as Escherichia coli Enteropathogenic and Enterotoxigenic may cause diarrhea or even death in children and immunoincompetent patients. As a foodborne disease, mostly from animal resources, the microbiological control is from great relevance. Food preservatives usually control these bacteria by inhibition or death. Although, these additives may cause negative impacts on public health. Natural compounds shows up as alternative to common chemical substances. Major compound of essential oils has known and broad-spectrum antimicrobial activity against foodborne pathogens. However, when used in sublethal doses it may induce physiological response in bacteria, which reduce susceptibility to these compounds or even other stressor agents. By these reasons, it becomes necessary to verify EPEC and ETEC adaptive and/or cross-adaptive capacity to major compounds of essential oils. Initially, pH of minimum inhibition and growth were determinated and minimum bactericidal concentration (MBC) of cinnamaldehyde, eugenol and citral against EPEC and ETEC. Adaptive capacity of EPEC and ETEC exposed to major compounds and acid stress were tested and cross-adaptation between major compound and acid stress were evaluated as well. EPEC and ETEC cells were grown in major compound or pH of minimum growth exposition during 6 hours at 37ºC on adaptation and cross-adaptation tests. After this, 10 8 CFU/mL standard suspensions of EPEC and ETEC were centrifuged and resuspended in Brain-heart infusion broth (BHI). In adaptation tests, sublethal doses of 1/4, 1/8 and 1/16 MBC of cinnamaldehyde, eugenol or citral and 0.5% of Tween 80 were added on BHI for previous exposition. EPEC and ETEC standard suspension cells were incubated at 37ºC for 24 hours under 0.5; 1.0; 1.2; 1.4; 1.6; 1.8 and 2.0 MBC of major compounds. After this period, cells were plated on Tryptic soy agar (TSA) and incubated at 37ºC for 24h to evaluate adaptive response. In cross-adaptation tests between acid stress and major compounds, EPEC and ETEC standard cells were grown in BHI with addition of 0.5% Tween 80 and major compounds at 0.5 to 2.0 MBC concentrations for 24h at 37ºC. Then, cells were plated on TSA and incubated at 37ºC for 24h. ETEC and EPEC previously exposed to major compound and pH were grown in BHI with pH of: 6.0; 5.0; 4.5; 4.0; 3.5; 3.0; 2.5; 2.0 using lactic acid as adjustment, followed by TSA plating and incubation. The pH of minimum inhibition and growth were 4.0 and 4.5, respectively for EPEC and ETEC. Cinnamaldehyde, eugenol and citral MBC were 0.125, 1.0 and 1,0%, respectively, for both pathotypes. Adaptation and cross-adaptation tests demonstrated that EPEC and ETEC pre-exposition to sublethal doses of major compound and pH of minimum growth promoted bacterial resistance. Therefore, cinnamaldehyde, eugenol and citral are potential option to be used as industrial antimicrobial sanitizers while in appropriate concentrations.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-10T17:20:35Z
2017-05-10T17:20:35Z
2017-05-05
2017-02-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GONÇALVES, M. C. et al. Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido. 2017. 61 p. Dissertação (Mestrado em Microbiologia Agrícola)-Universidade Federal de Lavras, Lavras, 2017.
http://repositorio.ufla.br/jspui/handle/1/12940
identifier_str_mv GONÇALVES, M. C. et al. Adaptação e adaptação cruzada de Escherichia coli enterotoxigênica e enteropatogênica a componentes majoritários de óleos essenciais e ao estresse ácido. 2017. 61 p. Dissertação (Mestrado em Microbiologia Agrícola)-Universidade Federal de Lavras, Lavras, 2017.
url http://repositorio.ufla.br/jspui/handle/1/12940
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Microbiologia Agrícola
UFLA
brasil
Departamento de Biologia
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Microbiologia Agrícola
UFLA
brasil
Departamento de Biologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1784549953487503360