Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/42417 |
Resumo: | The Brazilian Savanna, the second largest biome in the country, has scarce information about its wood volume production. Since our aim was to contribute to the better wood volume characterization in Brazilian Savanna vegetation, we conducted a case study in a Cerrado Sensu Stricto remnant in Minas Gerais state, Brazil, using different approaches and datasets to model the spatial distribution of wood volume, including forest inventory data, remotely-sensed imagery, and geostatistical models. Wood volume data were obtained from a forest inventory carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Ordinary kriging, multiple linear regression analysis, and regression kriging methods were used for wood volume estimation. Ordinary kriging resulted in estimates closer to each other in non-sampled areas (less variability) than the other methods for not considering information from these areas in the interpolation process. As multiple linear regression and regression kriging take into account the spectral data from remotely-sensed images, these methods provide higher discrimination potential for wood volume estimate mapping when vegetation presents high spatial heterogeneity, as in the Cerrado Sensu Stricto. Integration between field data, remotely-sensed imagery and geostatistical models provides a potential approach to spatially estimate wood volume in native vegetation. |
id |
UFLA_c17113297cf8a91d32dcc27a1bfcc622 |
---|---|
oai_identifier_str |
oai:localhost:1/42417 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, BrazilModelagem da distribuição espacial de volume de madeira em um fragmento de Cerrado Stricto Sensu no estado de Minas Gerais, BrasilGeostatistical modelsLandsat 5 TM imageryMultiple linear regressionRegression krigingBrazilian savannaModelos geoestatísticosImagens Landsat 5 TMRegressão linear múltiplaKrigagem com regressãoCerradoThe Brazilian Savanna, the second largest biome in the country, has scarce information about its wood volume production. Since our aim was to contribute to the better wood volume characterization in Brazilian Savanna vegetation, we conducted a case study in a Cerrado Sensu Stricto remnant in Minas Gerais state, Brazil, using different approaches and datasets to model the spatial distribution of wood volume, including forest inventory data, remotely-sensed imagery, and geostatistical models. Wood volume data were obtained from a forest inventory carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Ordinary kriging, multiple linear regression analysis, and regression kriging methods were used for wood volume estimation. Ordinary kriging resulted in estimates closer to each other in non-sampled areas (less variability) than the other methods for not considering information from these areas in the interpolation process. As multiple linear regression and regression kriging take into account the spectral data from remotely-sensed images, these methods provide higher discrimination potential for wood volume estimate mapping when vegetation presents high spatial heterogeneity, as in the Cerrado Sensu Stricto. Integration between field data, remotely-sensed imagery and geostatistical models provides a potential approach to spatially estimate wood volume in native vegetation.O Cerrado, segundo maior bioma brasileiro, possui escassas informações sobre a sua produção volumétrica. Assim, visando contribuir com a caracterização volumétrica do Cerrado, esse estudo foi realizado em um fragmento de Cerrado Sensu Stricto localizado em Minas Gerais, Brasil, usando diferentes abordagens e fontes de dados na modelagem da distribuição espacial do volume de madeira, incluindo dados do inventário florestal, imagens de sensoriamento remoto, e modelos geoestatísticos. Os dados volumétricos foram obtidos a partir do inventário florestal. Os dados espectrais foram coletados em uma imagem Landsat 5 TM, e compostos por informações de bandas espectrais e índices de vegetação. Foram utilizados os métodos de krigagem ordinária, regressão linear múltipla e krigagem com regressão para a estimativa volumétrica. A krigagem ordinária resultou em estimativas mais próximas umas das outras em áreas não amostradas (menor variabilidade) do que os outros métodos por não considerar informações dessas áreas no processo de interpolação. Por outro lado, a regressão linear múltipla e a krigagem com regressão consideram dados espectrais das imagens de sensoriamento remoto que proporcionam maior potencial de discriminação durante o mapeamento volumétrico em casos onde a vegetação apresenta alta variabilidade espacial, como o Cerrado Sensu Stricto. A integração de dados de campo, imagens de sensoriamento remoto e modelos geoestatísticos fornecem uma abordagem potencial para a estimativa volumétrica em fragmentos de vegetação nativa.Instituto de Pesquisas e Estudos Florestais2020-08-13T18:39:03Z2020-08-13T18:39:03Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfREIS, A. A. dos et al. Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil. Scientia Forestalis, [S.l.], v. 48, n. 125, e2844, 2020.http://repositorio.ufla.br/jspui/handle/1/42417Scientia Forestalisreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessReis, Aliny Aparecida dosDiniz, Juliana Maria Ferreira de SouzaAcerbi Júnior, Fausto WeimarMello, José Márcio deBatista, Anderson Pedro BernardinaFerraz Filho, Antonio Carloseng2020-08-13T18:39:03Zoai:localhost:1/42417Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2020-08-13T18:39:03Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil Modelagem da distribuição espacial de volume de madeira em um fragmento de Cerrado Stricto Sensu no estado de Minas Gerais, Brasil |
title |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil |
spellingShingle |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil Reis, Aliny Aparecida dos Geostatistical models Landsat 5 TM imagery Multiple linear regression Regression kriging Brazilian savanna Modelos geoestatísticos Imagens Landsat 5 TM Regressão linear múltipla Krigagem com regressão Cerrado |
title_short |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil |
title_full |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil |
title_fullStr |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil |
title_full_unstemmed |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil |
title_sort |
Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil |
author |
Reis, Aliny Aparecida dos |
author_facet |
Reis, Aliny Aparecida dos Diniz, Juliana Maria Ferreira de Souza Acerbi Júnior, Fausto Weimar Mello, José Márcio de Batista, Anderson Pedro Bernardina Ferraz Filho, Antonio Carlos |
author_role |
author |
author2 |
Diniz, Juliana Maria Ferreira de Souza Acerbi Júnior, Fausto Weimar Mello, José Márcio de Batista, Anderson Pedro Bernardina Ferraz Filho, Antonio Carlos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Reis, Aliny Aparecida dos Diniz, Juliana Maria Ferreira de Souza Acerbi Júnior, Fausto Weimar Mello, José Márcio de Batista, Anderson Pedro Bernardina Ferraz Filho, Antonio Carlos |
dc.subject.por.fl_str_mv |
Geostatistical models Landsat 5 TM imagery Multiple linear regression Regression kriging Brazilian savanna Modelos geoestatísticos Imagens Landsat 5 TM Regressão linear múltipla Krigagem com regressão Cerrado |
topic |
Geostatistical models Landsat 5 TM imagery Multiple linear regression Regression kriging Brazilian savanna Modelos geoestatísticos Imagens Landsat 5 TM Regressão linear múltipla Krigagem com regressão Cerrado |
description |
The Brazilian Savanna, the second largest biome in the country, has scarce information about its wood volume production. Since our aim was to contribute to the better wood volume characterization in Brazilian Savanna vegetation, we conducted a case study in a Cerrado Sensu Stricto remnant in Minas Gerais state, Brazil, using different approaches and datasets to model the spatial distribution of wood volume, including forest inventory data, remotely-sensed imagery, and geostatistical models. Wood volume data were obtained from a forest inventory carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Ordinary kriging, multiple linear regression analysis, and regression kriging methods were used for wood volume estimation. Ordinary kriging resulted in estimates closer to each other in non-sampled areas (less variability) than the other methods for not considering information from these areas in the interpolation process. As multiple linear regression and regression kriging take into account the spectral data from remotely-sensed images, these methods provide higher discrimination potential for wood volume estimate mapping when vegetation presents high spatial heterogeneity, as in the Cerrado Sensu Stricto. Integration between field data, remotely-sensed imagery and geostatistical models provides a potential approach to spatially estimate wood volume in native vegetation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-13T18:39:03Z 2020-08-13T18:39:03Z 2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
REIS, A. A. dos et al. Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil. Scientia Forestalis, [S.l.], v. 48, n. 125, e2844, 2020. http://repositorio.ufla.br/jspui/handle/1/42417 |
identifier_str_mv |
REIS, A. A. dos et al. Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil. Scientia Forestalis, [S.l.], v. 48, n. 125, e2844, 2020. |
url |
http://repositorio.ufla.br/jspui/handle/1/42417 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto de Pesquisas e Estudos Florestais |
publisher.none.fl_str_mv |
Instituto de Pesquisas e Estudos Florestais |
dc.source.none.fl_str_mv |
Scientia Forestalis reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439125751267328 |