Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil

Detalhes bibliográficos
Autor(a) principal: Reis, Aliny Aparecida dos
Data de Publicação: 2020
Outros Autores: Diniz, Juliana Maria Ferreira de Souza, Acerbi Júnior, Fausto Weimar, Mello, José Márcio de, Batista, Anderson Pedro Bernardina, Ferraz Filho, Antonio Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/42417
Resumo: The Brazilian Savanna, the second largest biome in the country, has scarce information about its wood volume production. Since our aim was to contribute to the better wood volume characterization in Brazilian Savanna vegetation, we conducted a case study in a Cerrado Sensu Stricto remnant in Minas Gerais state, Brazil, using different approaches and datasets to model the spatial distribution of wood volume, including forest inventory data, remotely-sensed imagery, and geostatistical models. Wood volume data were obtained from a forest inventory carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Ordinary kriging, multiple linear regression analysis, and regression kriging methods were used for wood volume estimation. Ordinary kriging resulted in estimates closer to each other in non-sampled areas (less variability) than the other methods for not considering information from these areas in the interpolation process. As multiple linear regression and regression kriging take into account the spectral data from remotely-sensed images, these methods provide higher discrimination potential for wood volume estimate mapping when vegetation presents high spatial heterogeneity, as in the Cerrado Sensu Stricto. Integration between field data, remotely-sensed imagery and geostatistical models provides a potential approach to spatially estimate wood volume in native vegetation.
id UFLA_c17113297cf8a91d32dcc27a1bfcc622
oai_identifier_str oai:localhost:1/42417
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, BrazilModelagem da distribuição espacial de volume de madeira em um fragmento de Cerrado Stricto Sensu no estado de Minas Gerais, BrasilGeostatistical modelsLandsat 5 TM imageryMultiple linear regressionRegression krigingBrazilian savannaModelos geoestatísticosImagens Landsat 5 TMRegressão linear múltiplaKrigagem com regressãoCerradoThe Brazilian Savanna, the second largest biome in the country, has scarce information about its wood volume production. Since our aim was to contribute to the better wood volume characterization in Brazilian Savanna vegetation, we conducted a case study in a Cerrado Sensu Stricto remnant in Minas Gerais state, Brazil, using different approaches and datasets to model the spatial distribution of wood volume, including forest inventory data, remotely-sensed imagery, and geostatistical models. Wood volume data were obtained from a forest inventory carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Ordinary kriging, multiple linear regression analysis, and regression kriging methods were used for wood volume estimation. Ordinary kriging resulted in estimates closer to each other in non-sampled areas (less variability) than the other methods for not considering information from these areas in the interpolation process. As multiple linear regression and regression kriging take into account the spectral data from remotely-sensed images, these methods provide higher discrimination potential for wood volume estimate mapping when vegetation presents high spatial heterogeneity, as in the Cerrado Sensu Stricto. Integration between field data, remotely-sensed imagery and geostatistical models provides a potential approach to spatially estimate wood volume in native vegetation.O Cerrado, segundo maior bioma brasileiro, possui escassas informações sobre a sua produção volumétrica. Assim, visando contribuir com a caracterização volumétrica do Cerrado, esse estudo foi realizado em um fragmento de Cerrado Sensu Stricto localizado em Minas Gerais, Brasil, usando diferentes abordagens e fontes de dados na modelagem da distribuição espacial do volume de madeira, incluindo dados do inventário florestal, imagens de sensoriamento remoto, e modelos geoestatísticos. Os dados volumétricos foram obtidos a partir do inventário florestal. Os dados espectrais foram coletados em uma imagem Landsat 5 TM, e compostos por informações de bandas espectrais e índices de vegetação. Foram utilizados os métodos de krigagem ordinária, regressão linear múltipla e krigagem com regressão para a estimativa volumétrica. A krigagem ordinária resultou em estimativas mais próximas umas das outras em áreas não amostradas (menor variabilidade) do que os outros métodos por não considerar informações dessas áreas no processo de interpolação. Por outro lado, a regressão linear múltipla e a krigagem com regressão consideram dados espectrais das imagens de sensoriamento remoto que proporcionam maior potencial de discriminação durante o mapeamento volumétrico em casos onde a vegetação apresenta alta variabilidade espacial, como o Cerrado Sensu Stricto. A integração de dados de campo, imagens de sensoriamento remoto e modelos geoestatísticos fornecem uma abordagem potencial para a estimativa volumétrica em fragmentos de vegetação nativa.Instituto de Pesquisas e Estudos Florestais2020-08-13T18:39:03Z2020-08-13T18:39:03Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfREIS, A. A. dos et al. Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil. Scientia Forestalis, [S.l.], v. 48, n. 125, e2844, 2020.http://repositorio.ufla.br/jspui/handle/1/42417Scientia Forestalisreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessReis, Aliny Aparecida dosDiniz, Juliana Maria Ferreira de SouzaAcerbi Júnior, Fausto WeimarMello, José Márcio deBatista, Anderson Pedro BernardinaFerraz Filho, Antonio Carloseng2020-08-13T18:39:03Zoai:localhost:1/42417Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2020-08-13T18:39:03Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
Modelagem da distribuição espacial de volume de madeira em um fragmento de Cerrado Stricto Sensu no estado de Minas Gerais, Brasil
title Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
spellingShingle Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
Reis, Aliny Aparecida dos
Geostatistical models
Landsat 5 TM imagery
Multiple linear regression
Regression kriging
Brazilian savanna
Modelos geoestatísticos
Imagens Landsat 5 TM
Regressão linear múltipla
Krigagem com regressão
Cerrado
title_short Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
title_full Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
title_fullStr Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
title_full_unstemmed Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
title_sort Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
author Reis, Aliny Aparecida dos
author_facet Reis, Aliny Aparecida dos
Diniz, Juliana Maria Ferreira de Souza
Acerbi Júnior, Fausto Weimar
Mello, José Márcio de
Batista, Anderson Pedro Bernardina
Ferraz Filho, Antonio Carlos
author_role author
author2 Diniz, Juliana Maria Ferreira de Souza
Acerbi Júnior, Fausto Weimar
Mello, José Márcio de
Batista, Anderson Pedro Bernardina
Ferraz Filho, Antonio Carlos
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Reis, Aliny Aparecida dos
Diniz, Juliana Maria Ferreira de Souza
Acerbi Júnior, Fausto Weimar
Mello, José Márcio de
Batista, Anderson Pedro Bernardina
Ferraz Filho, Antonio Carlos
dc.subject.por.fl_str_mv Geostatistical models
Landsat 5 TM imagery
Multiple linear regression
Regression kriging
Brazilian savanna
Modelos geoestatísticos
Imagens Landsat 5 TM
Regressão linear múltipla
Krigagem com regressão
Cerrado
topic Geostatistical models
Landsat 5 TM imagery
Multiple linear regression
Regression kriging
Brazilian savanna
Modelos geoestatísticos
Imagens Landsat 5 TM
Regressão linear múltipla
Krigagem com regressão
Cerrado
description The Brazilian Savanna, the second largest biome in the country, has scarce information about its wood volume production. Since our aim was to contribute to the better wood volume characterization in Brazilian Savanna vegetation, we conducted a case study in a Cerrado Sensu Stricto remnant in Minas Gerais state, Brazil, using different approaches and datasets to model the spatial distribution of wood volume, including forest inventory data, remotely-sensed imagery, and geostatistical models. Wood volume data were obtained from a forest inventory carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Ordinary kriging, multiple linear regression analysis, and regression kriging methods were used for wood volume estimation. Ordinary kriging resulted in estimates closer to each other in non-sampled areas (less variability) than the other methods for not considering information from these areas in the interpolation process. As multiple linear regression and regression kriging take into account the spectral data from remotely-sensed images, these methods provide higher discrimination potential for wood volume estimate mapping when vegetation presents high spatial heterogeneity, as in the Cerrado Sensu Stricto. Integration between field data, remotely-sensed imagery and geostatistical models provides a potential approach to spatially estimate wood volume in native vegetation.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-13T18:39:03Z
2020-08-13T18:39:03Z
2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv REIS, A. A. dos et al. Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil. Scientia Forestalis, [S.l.], v. 48, n. 125, e2844, 2020.
http://repositorio.ufla.br/jspui/handle/1/42417
identifier_str_mv REIS, A. A. dos et al. Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil. Scientia Forestalis, [S.l.], v. 48, n. 125, e2844, 2020.
url http://repositorio.ufla.br/jspui/handle/1/42417
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto de Pesquisas e Estudos Florestais
publisher.none.fl_str_mv Instituto de Pesquisas e Estudos Florestais
dc.source.none.fl_str_mv Scientia Forestalis
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439125751267328