Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/13314 |
Resumo: | Lime essential oil (Citrus aurantifolia) is a product widely used by the food, cosmetics and pharmaceutical industry due of its remarkable chemical and sensory properties. After extracted, the lime essential oil is very susceptible to degradations and volatilizations. Thus, it is necessary to promote processes to reduce undesirable reactions. The microencapsulation process is widely recommended and used to preserve bioactive compounds for long periods. The objective of this work is to study the microencapsulation process of lemon essential oil through the spray drying process, using several biopolymers as a wall material. In the first article we studied the stability of lemon essential oil emulsions added of Arabic Gum (AG) and Whey Protein isolate (WPI). It was proposed a purely randomized design, varying the concentration of essential oil (5, 7,5 and 10%) and the composition of the wall material (AG, WPI and AG / WPI). The emulsions were homogenized using assisted ultrasound (240W / 2min). PH, conductivity, zeta potential, droplet size, rheology (viscosity and shear stress), optical microscopy and cream index were evaluated. No phase separation was observed during the first 4 hours of storage. In all treatments there was no significant variation of pH and conductivity values. Higher zeta potential values were found for treatments with WPI and higher oil concentration due to the characteristics and functional groups present in the biopolymer and in the lime essential oil. All droplet sizes presented values lower than 2μm. It is concluded that the whey proteins had more stable emulsions, this wall material being the basis for the production of the microparticles of lemon essential oil. The second article shows the study of the physicochemical properties of lemon essential oil microparticles using whey protein concentrated (CWP) and maltodextrins of dextrose equivalent (DE) values of 5, 10 and 20. The emulsions were homogenized by of ultrasound-assisted with power of 240W, for 2 min. After homogenization, the emulsions were spray dried at 170øC, with emulsion feed flow of 0.7 L / hr. Rheology, optical microscopy and droplet size analyzes were performed for the emulsions; and major composition and antioxidant activity of crude and encapsulated oil, moisture, water activity, surface oil content, total oil content, encapsulation efficiency, oil retention, particle size, scanning electron microscopy and x-ray diffraction. Emulsions with maltodextrins of higher DE values presented lower viscosity. The degree of hydrolyzation of the maltodextrin chains increased the moisture and water activity of microparticles. Surface structure of the microparticles showed no cracking. DRX showed the amorphous structure of the microparticles, ideal for microencapsulation processes. DE 20 presented better results of efficiency and antioxidant activity. DE of maltodextrins may interfere with the physicochemical properties of microparticles of lemon essential oil. In summary, the biopolymers used may be an alternative for the production of emulsions and microparticles of lemon essential oil. |
id |
UFLA_ca7be633f12717c7798d1576b08de7a2 |
---|---|
oai_identifier_str |
oai:localhost:1/13314 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicasMicroencapsulation of lime essential oil (Citrus aurantifolia): emulsions and study of phisicochemical propertiesLimão – Óleo essencialMicroencapsulaçãoBiopolímeroLemon – Essential oilMicroencapsulationBiopolymerTecnologia de Produtos de Origem VegetalLime essential oil (Citrus aurantifolia) is a product widely used by the food, cosmetics and pharmaceutical industry due of its remarkable chemical and sensory properties. After extracted, the lime essential oil is very susceptible to degradations and volatilizations. Thus, it is necessary to promote processes to reduce undesirable reactions. The microencapsulation process is widely recommended and used to preserve bioactive compounds for long periods. The objective of this work is to study the microencapsulation process of lemon essential oil through the spray drying process, using several biopolymers as a wall material. In the first article we studied the stability of lemon essential oil emulsions added of Arabic Gum (AG) and Whey Protein isolate (WPI). It was proposed a purely randomized design, varying the concentration of essential oil (5, 7,5 and 10%) and the composition of the wall material (AG, WPI and AG / WPI). The emulsions were homogenized using assisted ultrasound (240W / 2min). PH, conductivity, zeta potential, droplet size, rheology (viscosity and shear stress), optical microscopy and cream index were evaluated. No phase separation was observed during the first 4 hours of storage. In all treatments there was no significant variation of pH and conductivity values. Higher zeta potential values were found for treatments with WPI and higher oil concentration due to the characteristics and functional groups present in the biopolymer and in the lime essential oil. All droplet sizes presented values lower than 2μm. It is concluded that the whey proteins had more stable emulsions, this wall material being the basis for the production of the microparticles of lemon essential oil. The second article shows the study of the physicochemical properties of lemon essential oil microparticles using whey protein concentrated (CWP) and maltodextrins of dextrose equivalent (DE) values of 5, 10 and 20. The emulsions were homogenized by of ultrasound-assisted with power of 240W, for 2 min. After homogenization, the emulsions were spray dried at 170øC, with emulsion feed flow of 0.7 L / hr. Rheology, optical microscopy and droplet size analyzes were performed for the emulsions; and major composition and antioxidant activity of crude and encapsulated oil, moisture, water activity, surface oil content, total oil content, encapsulation efficiency, oil retention, particle size, scanning electron microscopy and x-ray diffraction. Emulsions with maltodextrins of higher DE values presented lower viscosity. The degree of hydrolyzation of the maltodextrin chains increased the moisture and water activity of microparticles. Surface structure of the microparticles showed no cracking. DRX showed the amorphous structure of the microparticles, ideal for microencapsulation processes. DE 20 presented better results of efficiency and antioxidant activity. DE of maltodextrins may interfere with the physicochemical properties of microparticles of lemon essential oil. In summary, the biopolymers used may be an alternative for the production of emulsions and microparticles of lemon essential oil.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)O óleo essencial de limão (Citrus aurantifolia) é um produto muito utilizado pela indústria de alimentos, cosméticos e farmacêutica, devido as suas propriedades químicas e sensoriais marcantes. Depois de extraído, o óleo essencial de limão é muito suscetível a degradações e volatilizações. Com isso, é necessário promover processos para reduzir reações indesejáveis. O processo de microencapsulação é amplamente recomendado e utilizado para se conservar compostos bioativos por longos períodos. Sendo assim, este trabalho tem como objetivo, estudar o processo de microencapsulação do óleo essencial de limão através do processo de spray drying, utilizando diversos biopolímeros como material de parede. No primeiro artigo foi estudada a estabilidade de emulsões óleo essencial de limão, adicionadas de Goma Arábica (GA) e Isolado Proteico de Soro de Leite. Foi proposto delineamento meramente casualizado, variando-se a concentração de óleo essencial (5, 7,5 e 10%) e a composição do material de parede (GA, WPI e GA/WPI). As emulsões foram homogeneizadas utilizando ultrassom assistido (240W/2min). Foram avaliados pH, condutividade, potencial zeta, tamanho de gotículas, reologia (viscosidade e tensão de cisalhamento), microscopia ótica e índice de cremeação. Não se observou separação de fases durante as 4 primeiras horas de armazenamento. Em todos os tratamentos não houve variação significativa dos valores de pH e condutivadade. Maiores valores de potencial zeta foram encontrados para tratamentos com WPI e maiores concentração de óleo devido as características e grupos funcionais presentes no biopolímero e no óleo essencial de limão. Todos os tamanhos de gotículas apresentaram valores menores que 2µm. Conclui-se que as proteínas do soro de leite apresentaram emulsões mais estáveis, sendo este material de parede, a base para a produção das micropartículas de óleo essencial de limão. O segundo artigo mostra o estudo das propriedades físico-quimicas de micropartículas de óleo essencial de limão, utilizando-se proteínas de soro de leite concentradas (WPC) e maltodextrinas de valores de dextrose equivalente (DE) de 5, 10 e 20. As emulsões foram homogeneizadas através do ultrassom assistido, com potência de 240W, por 2 min. Após homogeneização, as emulsões foram submetidas a secagem por spray drying à 170°C, com fluxo de alimentação da emulsão de 0,7 L/h. Foram realizadas análises de reologia, microscopia ótica e tamanho de gotas, para as emulsões e; composição majoritária e atividade antioxidante do óleo cru e encapsulado, umidade, atividade de água, teor de óleo superficial, teor de óleo total, eficiência de encapsulação, retenção de óleo, tamanho de partículas, microscopia eletrônica de varredura e difração de raio-x. Emulsões com maltodextrinas de maiores valores de DE apresentaram menor viscosidade. O grau de hidrolização das cadeias de maltodextrina aumentaram a umidade e atividade de água das MP. Estrutura superficial das micropartículas não apresentaram rachaduras. DRX mostrou a estrutura amorfa das micropartículas, ideal para processos de microencapsulação. DE 20 apresentaram melhores resultados de eficiência e atividade antioxidante. DE de maltodextrinas podem interferir nas propriedades físico-químicas de micropartículas de óleo essencial de limão. Em resumo, os biopolímeros utilizados podem ser uma alternativa para produção de emulsões e micropartículas de óleo essencial de limão.Universidade Federal de LavrasPrograma de Pós-Graduação em Ciência dos AlimentosUFLAbrasilDepartamento de Ciência dos AlimentosBorges, Soraia VilelaBotrel, Diego AlvarengaCorrea, Jefferson Luiz GomesCosta, Joyce Maria Gomes daBirchal, Viviane SantosFelix, Pedro Henrique Campelo2017-07-10T11:01:06Z2017-07-10T11:01:06Z2017-06-222017-05-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFELIX, P. H. C. Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas. 2017. 117 p. Tese (Doutorado em Ciência dos Alimentos)-Universidade Federal de Lavras, Lavras, 2017.http://repositorio.ufla.br/jspui/handle/1/13314porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2017-07-10T11:01:06Zoai:localhost:1/13314Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2017-07-10T11:01:06Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas Microencapsulation of lime essential oil (Citrus aurantifolia): emulsions and study of phisicochemical properties |
title |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas |
spellingShingle |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas Felix, Pedro Henrique Campelo Limão – Óleo essencial Microencapsulação Biopolímero Lemon – Essential oil Microencapsulation Biopolymer Tecnologia de Produtos de Origem Vegetal |
title_short |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas |
title_full |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas |
title_fullStr |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas |
title_full_unstemmed |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas |
title_sort |
Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas |
author |
Felix, Pedro Henrique Campelo |
author_facet |
Felix, Pedro Henrique Campelo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Borges, Soraia Vilela Botrel, Diego Alvarenga Correa, Jefferson Luiz Gomes Costa, Joyce Maria Gomes da Birchal, Viviane Santos |
dc.contributor.author.fl_str_mv |
Felix, Pedro Henrique Campelo |
dc.subject.por.fl_str_mv |
Limão – Óleo essencial Microencapsulação Biopolímero Lemon – Essential oil Microencapsulation Biopolymer Tecnologia de Produtos de Origem Vegetal |
topic |
Limão – Óleo essencial Microencapsulação Biopolímero Lemon – Essential oil Microencapsulation Biopolymer Tecnologia de Produtos de Origem Vegetal |
description |
Lime essential oil (Citrus aurantifolia) is a product widely used by the food, cosmetics and pharmaceutical industry due of its remarkable chemical and sensory properties. After extracted, the lime essential oil is very susceptible to degradations and volatilizations. Thus, it is necessary to promote processes to reduce undesirable reactions. The microencapsulation process is widely recommended and used to preserve bioactive compounds for long periods. The objective of this work is to study the microencapsulation process of lemon essential oil through the spray drying process, using several biopolymers as a wall material. In the first article we studied the stability of lemon essential oil emulsions added of Arabic Gum (AG) and Whey Protein isolate (WPI). It was proposed a purely randomized design, varying the concentration of essential oil (5, 7,5 and 10%) and the composition of the wall material (AG, WPI and AG / WPI). The emulsions were homogenized using assisted ultrasound (240W / 2min). PH, conductivity, zeta potential, droplet size, rheology (viscosity and shear stress), optical microscopy and cream index were evaluated. No phase separation was observed during the first 4 hours of storage. In all treatments there was no significant variation of pH and conductivity values. Higher zeta potential values were found for treatments with WPI and higher oil concentration due to the characteristics and functional groups present in the biopolymer and in the lime essential oil. All droplet sizes presented values lower than 2μm. It is concluded that the whey proteins had more stable emulsions, this wall material being the basis for the production of the microparticles of lemon essential oil. The second article shows the study of the physicochemical properties of lemon essential oil microparticles using whey protein concentrated (CWP) and maltodextrins of dextrose equivalent (DE) values of 5, 10 and 20. The emulsions were homogenized by of ultrasound-assisted with power of 240W, for 2 min. After homogenization, the emulsions were spray dried at 170øC, with emulsion feed flow of 0.7 L / hr. Rheology, optical microscopy and droplet size analyzes were performed for the emulsions; and major composition and antioxidant activity of crude and encapsulated oil, moisture, water activity, surface oil content, total oil content, encapsulation efficiency, oil retention, particle size, scanning electron microscopy and x-ray diffraction. Emulsions with maltodextrins of higher DE values presented lower viscosity. The degree of hydrolyzation of the maltodextrin chains increased the moisture and water activity of microparticles. Surface structure of the microparticles showed no cracking. DRX showed the amorphous structure of the microparticles, ideal for microencapsulation processes. DE 20 presented better results of efficiency and antioxidant activity. DE of maltodextrins may interfere with the physicochemical properties of microparticles of lemon essential oil. In summary, the biopolymers used may be an alternative for the production of emulsions and microparticles of lemon essential oil. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07-10T11:01:06Z 2017-07-10T11:01:06Z 2017-06-22 2017-05-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FELIX, P. H. C. Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas. 2017. 117 p. Tese (Doutorado em Ciência dos Alimentos)-Universidade Federal de Lavras, Lavras, 2017. http://repositorio.ufla.br/jspui/handle/1/13314 |
identifier_str_mv |
FELIX, P. H. C. Microencapsulação de óleo essencial de limão (Citrus aurantifolia): emulsões e estudo das propriedades físicos-químicas. 2017. 117 p. Tese (Doutorado em Ciência dos Alimentos)-Universidade Federal de Lavras, Lavras, 2017. |
url |
http://repositorio.ufla.br/jspui/handle/1/13314 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Ciência dos Alimentos UFLA brasil Departamento de Ciência dos Alimentos |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Ciência dos Alimentos UFLA brasil Departamento de Ciência dos Alimentos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439043530326016 |