Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional

Detalhes bibliográficos
Autor(a) principal: Scalco Neto, Heitor
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/12161
Resumo: The Network Intrusion Detection Systems - NIDS have great importance in guaranteeing the reliability and availability of computer networks. Therefore, this thesis proposes a methodology for developing an anomaly based and Open-Source NIDS, using the following Computational Intelligence Techniques (CI): Artificial Neural Networks, Support Vector Machines and Random Forests. The CI techniques are applied and compared in order to evaluate the intrusion detection methods for computing environments. In order for the NIDS to operate in real environment, it was necessary to develop an API, with the objective of capturing the network traffic and preprocess the information for the CI techniques. Thus, it was possible to perform the tests in different network infrastructures and in real environment. The training of these techniques was done using the ISCX 2012 network traffic database, comprised by varied types of traffic. Using the developed API, we created an auxiliary database for tests, approaching traffic types alternative to that found with the ISCX 2012, however with network in smaller scale and with different operational systems and tools. This database allows the efficacy tests of the CI techniques to be performed in different infrastructures and modes of use. This thesis had the main contributions in the following topics: (i) development of an API, Open-Source, for capturing packages, preprocessing and integrating with the Computacional Intelligence techniques; (ii) evaluation of the Computacional Intelligence techniques for the network intrusion detection issue; (iii) use of independent software and/or host features . The results obtained with the ISCX 2012 database and CI techniques presented adjustment averages close to 95%. With the test database, the adjustment averages were of close to 97%, affirming the feasibility of the use of CI techniques for resolving network intrusion reconnaissance issues. It is worth mentioning that the test database was not used to train the CI techniques, only to validate the same.
id UFLA_cfef302e22bc667e254b67215b8e0649
oai_identifier_str oai:localhost:1/12161
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacionalNetwork intrusion detection system with computational intelligence techniquesInteligência computacionalRedes de computadores – Medidas de segurançaRedes neurais (Computação)Floresta aleatóriaMáquinas de vetores de suporteComputational intelligenceComputer networks – Security measuresNeural networks (Computer science)Random forestSupport vector machinesSistemas de ComputaçãoThe Network Intrusion Detection Systems - NIDS have great importance in guaranteeing the reliability and availability of computer networks. Therefore, this thesis proposes a methodology for developing an anomaly based and Open-Source NIDS, using the following Computational Intelligence Techniques (CI): Artificial Neural Networks, Support Vector Machines and Random Forests. The CI techniques are applied and compared in order to evaluate the intrusion detection methods for computing environments. In order for the NIDS to operate in real environment, it was necessary to develop an API, with the objective of capturing the network traffic and preprocess the information for the CI techniques. Thus, it was possible to perform the tests in different network infrastructures and in real environment. The training of these techniques was done using the ISCX 2012 network traffic database, comprised by varied types of traffic. Using the developed API, we created an auxiliary database for tests, approaching traffic types alternative to that found with the ISCX 2012, however with network in smaller scale and with different operational systems and tools. This database allows the efficacy tests of the CI techniques to be performed in different infrastructures and modes of use. This thesis had the main contributions in the following topics: (i) development of an API, Open-Source, for capturing packages, preprocessing and integrating with the Computacional Intelligence techniques; (ii) evaluation of the Computacional Intelligence techniques for the network intrusion detection issue; (iii) use of independent software and/or host features . The results obtained with the ISCX 2012 database and CI techniques presented adjustment averages close to 95%. With the test database, the adjustment averages were of close to 97%, affirming the feasibility of the use of CI techniques for resolving network intrusion reconnaissance issues. It is worth mentioning that the test database was not used to train the CI techniques, only to validate the same.Os Sistemas de Detecção de Intrusão em Redes de Computadores (NIDS - Network Intrusion Detection Systems) têm importância fundamental para garantir a confiabilidade e disponibilidade em uma rede de computadores. Desta forma, esta dissertação de mestrado propõe umametodologia para o desenvolvimento de um NIDS, por anomalias, Open-Source, com as seguintes técnicas de Inteligência Computacional (I.C): Redes Neurais Artificiais, Máquinas de Vetores de Suporte e Florestas Aleatórias.As técnicas de I.C são aplicadas e comparadas, a fim de avaliar os métodos para a detecção de intrusão nos ambientes computacionais. Para que o NIDS seja capaz de operar em ambiente real, fez-se necessário o desenvolvimento de uma API que tem como objetivo capturar o tráfego de rede e realizar o pré-processamento da informação para as técnicas de I.C. Desta forma, é possível realizar testes com diferentes infraestruturas de rede e, também, em ambiente real. O treinamento dessas técnicas foi realizado com a base de dados de tráfego de rede ISCX 2012, a qual é composta por tipos de tráfego variados. A partir da API desenvolvida, criou-se uma base de dados auxiliar, para testes, abordando tipos de tráfego um pouco alternativos ao encontrado na ISCX 2012, porém com uma rede em menor escala, com diferentes sistemas operacionais e ferramentas. Esta base de dados permite que testes de eficácia das técnicas de I.C sejam realizados em diferentes infraestruturas e modos de utilização. Esta dissertação de mestrado tem como principais contribuições os seguintes tópicos: (i) desenvolvimento de uma API, Open-Source, para captura de pacotes, pré-processamento e integração com as técnicas de Inteligência Computacional; (ii) avaliação das técnicas de Inteligência Computacional para o problema de detecção de intrusão em redes de computadores; (iii) utilização de características independentes de softwares e/ou hosts. Os resultados obtidos com a base de dados ISCX 2012 e as técnicas de I.C apresentam médias de acerto em torno de 95%. Já, com a base de testes, obtiveram-se médias de acerto em torno de 97% afirmando, assim, a viabilidade da utilização de técnicas de I.C para a resolução de problemas de reconhecimento de intrusão em redes de computadores — Cabe ressaltar que a base de testes não foi utilizada para realizar o treinamento das técnicas de I.C, apenas para a validação dos mesmos.Universidade Federal de LavrasPrograma de Pós-Graduação em Ciência da ComputaçãoUFLAbrasilDepartamento de Ciência da ComputaçãoLacerda, Wilian SoaresCorreia, Luiz Henrique AndradeCastro, Cristiano Leite deScalco Neto, Heitor2017-01-18T19:12:15Z2017-01-18T19:12:15Z2017-01-182016-11-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSCALCO NETO, H. Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional. 2017. 152 p. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal de Lavras, Lavras, 2016.http://repositorio.ufla.br/jspui/handle/1/12161porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-04-13T18:06:56Zoai:localhost:1/12161Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-04-13T18:06:56Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional
Network intrusion detection system with computational intelligence techniques
title Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional
spellingShingle Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional
Scalco Neto, Heitor
Inteligência computacional
Redes de computadores – Medidas de segurança
Redes neurais (Computação)
Floresta aleatória
Máquinas de vetores de suporte
Computational intelligence
Computer networks – Security measures
Neural networks (Computer science)
Random forest
Support vector machines
Sistemas de Computação
title_short Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional
title_full Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional
title_fullStr Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional
title_full_unstemmed Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional
title_sort Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional
author Scalco Neto, Heitor
author_facet Scalco Neto, Heitor
author_role author
dc.contributor.none.fl_str_mv Lacerda, Wilian Soares
Correia, Luiz Henrique Andrade
Castro, Cristiano Leite de
dc.contributor.author.fl_str_mv Scalco Neto, Heitor
dc.subject.por.fl_str_mv Inteligência computacional
Redes de computadores – Medidas de segurança
Redes neurais (Computação)
Floresta aleatória
Máquinas de vetores de suporte
Computational intelligence
Computer networks – Security measures
Neural networks (Computer science)
Random forest
Support vector machines
Sistemas de Computação
topic Inteligência computacional
Redes de computadores – Medidas de segurança
Redes neurais (Computação)
Floresta aleatória
Máquinas de vetores de suporte
Computational intelligence
Computer networks – Security measures
Neural networks (Computer science)
Random forest
Support vector machines
Sistemas de Computação
description The Network Intrusion Detection Systems - NIDS have great importance in guaranteeing the reliability and availability of computer networks. Therefore, this thesis proposes a methodology for developing an anomaly based and Open-Source NIDS, using the following Computational Intelligence Techniques (CI): Artificial Neural Networks, Support Vector Machines and Random Forests. The CI techniques are applied and compared in order to evaluate the intrusion detection methods for computing environments. In order for the NIDS to operate in real environment, it was necessary to develop an API, with the objective of capturing the network traffic and preprocess the information for the CI techniques. Thus, it was possible to perform the tests in different network infrastructures and in real environment. The training of these techniques was done using the ISCX 2012 network traffic database, comprised by varied types of traffic. Using the developed API, we created an auxiliary database for tests, approaching traffic types alternative to that found with the ISCX 2012, however with network in smaller scale and with different operational systems and tools. This database allows the efficacy tests of the CI techniques to be performed in different infrastructures and modes of use. This thesis had the main contributions in the following topics: (i) development of an API, Open-Source, for capturing packages, preprocessing and integrating with the Computacional Intelligence techniques; (ii) evaluation of the Computacional Intelligence techniques for the network intrusion detection issue; (iii) use of independent software and/or host features . The results obtained with the ISCX 2012 database and CI techniques presented adjustment averages close to 95%. With the test database, the adjustment averages were of close to 97%, affirming the feasibility of the use of CI techniques for resolving network intrusion reconnaissance issues. It is worth mentioning that the test database was not used to train the CI techniques, only to validate the same.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-04
2017-01-18T19:12:15Z
2017-01-18T19:12:15Z
2017-01-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SCALCO NETO, H. Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional. 2017. 152 p. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal de Lavras, Lavras, 2016.
http://repositorio.ufla.br/jspui/handle/1/12161
identifier_str_mv SCALCO NETO, H. Sistema de detecção de intrusão em redes de computadores com técnicas de inteligência computacional. 2017. 152 p. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal de Lavras, Lavras, 2016.
url http://repositorio.ufla.br/jspui/handle/1/12161
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Ciência da Computação
UFLA
brasil
Departamento de Ciência da Computação
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Ciência da Computação
UFLA
brasil
Departamento de Ciência da Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835121945935872