Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/959 http://www.sciencedirect.com/science/article/pii/S0303243404000194 |
Resumo: | Sub-pixel analysis is capable of generating continuous fi elds, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation. |
id |
UFLA_dee1cd4b32cc223f41cd9e27c662daed |
---|---|
oai_identifier_str |
oai:localhost:1/959 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysisEstimativa subpixel da cobertura arbórea e superfície esposta utilizando análise por árvore de regfressãoSensoriamento remotoMapeamentoCerradoRemote sensingMappingSub-pixel analysis is capable of generating continuous fi elds, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation.A análise subpixel é capaz de gerar campos contínuos que representam a variabilidade intrínseca das classes temáticas. Neste trabalho, objetivou-se desenvolver um modelo numérico para representar a variabilidade de cobertura de dossel e de superfície exposta dentro de cada formação fl orestal. Este estudo foi conduzido em área de amortecimento ao longo da sub-bacia no médio São Francisco em MG, Brasil. Foram usados imagens dos satélites Landsat TM, e IKONOS, e o algoritmo GUIDE para ajustes dos modelos. Os resultados foram duas imagens índices, uma de cobertura arbórea e outra de superfície exposta para toda a área estudada, utilizando o modelo de árvore de regressão. O uso de modelos não-paramétricos e não-lineares por árvore de regressão apresentou resultados satisfatórios na representação de padrões de formações florestais aluviais, deciduais e savânicas.2013-09-02T19:10:57Z2013-09-02T19:10:57Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfTONELI, C. A. Z.; CARVALHO, L. M. T. de. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis. Cerne, Lavras, MG, v. 17, n. 3, p. 411-416, jul./set. 2011.http://repositorio.ufla.br/jspui/handle/1/959http://www.sciencedirect.com/science/article/pii/S0303243404000194Toneli, Carlos Augusto ZangrandoCarvalho, Luis Marcelo Tavares deinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2013-10-04T11:50:53Zoai:localhost:1/959Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2013-10-04T11:50:53Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis Estimativa subpixel da cobertura arbórea e superfície esposta utilizando análise por árvore de regfressão |
title |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
spellingShingle |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis Toneli, Carlos Augusto Zangrando Sensoriamento remoto Mapeamento Cerrado Remote sensing Mapping |
title_short |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
title_full |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
title_fullStr |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
title_full_unstemmed |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
title_sort |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
author |
Toneli, Carlos Augusto Zangrando |
author_facet |
Toneli, Carlos Augusto Zangrando Carvalho, Luis Marcelo Tavares de |
author_role |
author |
author2 |
Carvalho, Luis Marcelo Tavares de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Toneli, Carlos Augusto Zangrando Carvalho, Luis Marcelo Tavares de |
dc.subject.por.fl_str_mv |
Sensoriamento remoto Mapeamento Cerrado Remote sensing Mapping |
topic |
Sensoriamento remoto Mapeamento Cerrado Remote sensing Mapping |
description |
Sub-pixel analysis is capable of generating continuous fi elds, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09-02T19:10:57Z 2013-09-02T19:10:57Z 2013 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
TONELI, C. A. Z.; CARVALHO, L. M. T. de. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis. Cerne, Lavras, MG, v. 17, n. 3, p. 411-416, jul./set. 2011. http://repositorio.ufla.br/jspui/handle/1/959 http://www.sciencedirect.com/science/article/pii/S0303243404000194 |
identifier_str_mv |
TONELI, C. A. Z.; CARVALHO, L. M. T. de. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis. Cerne, Lavras, MG, v. 17, n. 3, p. 411-416, jul./set. 2011. |
url |
http://repositorio.ufla.br/jspui/handle/1/959 http://www.sciencedirect.com/science/article/pii/S0303243404000194 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439121301110784 |