Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/14208 |
Resumo: | Sub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation. |
id |
UFLA_df7a0cc10cb7bf438b7d408279016dfb |
---|---|
oai_identifier_str |
oai:localhost:1/14208 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysisEstimativa subpixel da cobertura arbórea e superfície exposta utilizando análise por árvore de regressãoRemote sensingMappingCerradoSensoriamento remotoMapeamentoSub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation. A análise subpixel é capaz de gerar campos contínuos que representam a variabilidade intrínseca das classes temáticas. Neste trabalho, objetivou-se desenvolver um modelo numérico para representar a variabilidade de cobertura de dossel e de superfície exposta dentro de cada formação florestal. Este estudo foi conduzido em área de amortecimento ao longo da sub-bacia no médio São Francisco em MG, Brasil. Foram usados imagens dos satélites Landsat TM, e IKONOS, e o algoritmo GUIDE para ajustes dos modelos. Os resultados foram duas imagens índices, uma de cobertura arbórea e outra de superfície exposta para toda a área estudada, utilizando o modelo de árvore de regressão. O uso de modelos não-paramétricos e não-lineares por árvore de regressão apresentou resultados satisfatórios na representação de padrões de formações florestais aluviais, deciduais e savânicas.Universidade Federal de Lavras (UFLA)2015-05-122017-08-01T20:13:54Z2017-08-01T20:13:54Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfTONELI, C. A. Z.; CARVALHO, L. M. T. de. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis. CERNE, Lavras, v. 17, n. 3, p. 411-416, jul./set. 2011.http://repositorio.ufla.br/jspui/handle/1/142082317-63420104-7760reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.cerne.ufla.br/site/index.php/CERNE/article/view/63/54Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessToneli, Carlos Augusto ZangrandoCarvalho, Luís Marcelo Tavares de2021-06-23T00:04:39Zoai:localhost:1/14208Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-06-23T00:04:39Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis Estimativa subpixel da cobertura arbórea e superfície exposta utilizando análise por árvore de regressão |
title |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
spellingShingle |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis Toneli, Carlos Augusto Zangrando Remote sensing Mapping Cerrado Sensoriamento remoto Mapeamento |
title_short |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
title_full |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
title_fullStr |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
title_full_unstemmed |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
title_sort |
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis |
author |
Toneli, Carlos Augusto Zangrando |
author_facet |
Toneli, Carlos Augusto Zangrando Carvalho, Luís Marcelo Tavares de |
author_role |
author |
author2 |
Carvalho, Luís Marcelo Tavares de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Toneli, Carlos Augusto Zangrando Carvalho, Luís Marcelo Tavares de |
dc.subject.por.fl_str_mv |
Remote sensing Mapping Cerrado Sensoriamento remoto Mapeamento |
topic |
Remote sensing Mapping Cerrado Sensoriamento remoto Mapeamento |
description |
Sub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05-12 2017-08-01T20:13:54Z 2017-08-01T20:13:54Z 2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
TONELI, C. A. Z.; CARVALHO, L. M. T. de. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis. CERNE, Lavras, v. 17, n. 3, p. 411-416, jul./set. 2011. http://repositorio.ufla.br/jspui/handle/1/14208 |
identifier_str_mv |
TONELI, C. A. Z.; CARVALHO, L. M. T. de. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis. CERNE, Lavras, v. 17, n. 3, p. 411-416, jul./set. 2011. |
url |
http://repositorio.ufla.br/jspui/handle/1/14208 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.cerne.ufla.br/site/index.php/CERNE/article/view/63/54 |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA) |
publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA) |
dc.source.none.fl_str_mv |
2317-6342 0104-7760 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439213616693248 |