Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos

Detalhes bibliográficos
Autor(a) principal: OLIVEIRA, Ana Gabriela Caldas
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/2076
Resumo: Breast cancer is the second most common type of cancer in the population and the most common among women. Mammography remains the only method capable of reducing mortality from the disease. The main objective of this study was to evaluate the predictive factors and importance of the clínical variables for mammography reports according to the BI-RADS® (Breast Imaging Reporting and Data System) classification in women who performed mammograms in the city of São Luís (MA). A cross-sectional study was carried out between June 2014 and October 2015, with women receiving care in the public and private network. Demographic and socioeconomic characteristics, life and reproductive habits, as well as the mammographic report according to BIRADS® classification were evaluated. In the first article, the chi-square test and a classification tree type model were used to identify the predictors of BI-RADS® 0 occurrence. Factors related to the high rate of inconclusive mammograms were found to be premenopausal, irregular adhesion to mammography screening, age between 40 and 49 years, and BMI (Body Mass Index) ≥ 25 kg/m2. In the second article, the objective was to evaluate the importance of age, clinical and reproductive characteristics in BI-RADS® classification using ANN (artificial neural network). The overall accuracy of ANN constructed only with characteristics of the mammographic report was 88.5% in the training phase and 78.5% in the test. With the association of the clinical variables, there was an improvement in the overall accuracy of the network, passing to 90% training phase and 83.5% in the test. This improvement was more evident in the BI-RADS® 0 classification (68.6%) and BI-RADS® 4 and 5 (66.7%). The accuracy in classifying BI-RADS® 1, 2 and 3 patients was similar in both networks, around 95%. Regarding the importance of the variables in the construction of ANN, the presence of nodule followed by the presence of calcification were the most important variables in both ANN; Age, being in HRT (hormone replacement therapy), menopause and early menarche, the most important clinical and reproductive variables. The results found point to the high frequency of mammograms classified BI-RADS® 0 in women aged between 40 and 59 years and with a BMI ≥ 25 kg / m2, in addition it was concluded that age, clínical and radiological variables can help the Radiologist for classification of mammography reports.
id UFMA_0e5e6095b086da2511e5575e9c37956d
oai_identifier_str oai:tede2:tede/2076
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling SANTOS, Alcione Miranda dos641.261.104-53http://lattes.cnpq.br/2709550775435326PALACIO, Glaucia Andrade e Silvahttp://lattes.cnpq.br/0413465696081991MARTINS, Marília da Glóriahttp://lattes.cnpq.br/1876365333157244THOMAZ, Erika Bárbara Abreu Fonsecahttp://lattes.cnpq.br/3644251156905353BATISTA, Rosângela Fernandes Lucenahttp://lattes.cnpq.br/3936205532436748http://lattes.cnpq.br/0334634143072866OLIVEIRA, Ana Gabriela Caldas2018-01-19T20:12:04Z2017-03-31OLIVEIRA, Ana Gabriela Caldas. Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos. 2017. 119 f. Tese (Doutorado em Saúde Coletiva) - Universidade Federal do Maranhão, São Luís, 2017.https://tedebc.ufma.br/jspui/handle/tede/tede/2076Breast cancer is the second most common type of cancer in the population and the most common among women. Mammography remains the only method capable of reducing mortality from the disease. The main objective of this study was to evaluate the predictive factors and importance of the clínical variables for mammography reports according to the BI-RADS® (Breast Imaging Reporting and Data System) classification in women who performed mammograms in the city of São Luís (MA). A cross-sectional study was carried out between June 2014 and October 2015, with women receiving care in the public and private network. Demographic and socioeconomic characteristics, life and reproductive habits, as well as the mammographic report according to BIRADS® classification were evaluated. In the first article, the chi-square test and a classification tree type model were used to identify the predictors of BI-RADS® 0 occurrence. Factors related to the high rate of inconclusive mammograms were found to be premenopausal, irregular adhesion to mammography screening, age between 40 and 49 years, and BMI (Body Mass Index) ≥ 25 kg/m2. In the second article, the objective was to evaluate the importance of age, clinical and reproductive characteristics in BI-RADS® classification using ANN (artificial neural network). The overall accuracy of ANN constructed only with characteristics of the mammographic report was 88.5% in the training phase and 78.5% in the test. With the association of the clinical variables, there was an improvement in the overall accuracy of the network, passing to 90% training phase and 83.5% in the test. This improvement was more evident in the BI-RADS® 0 classification (68.6%) and BI-RADS® 4 and 5 (66.7%). The accuracy in classifying BI-RADS® 1, 2 and 3 patients was similar in both networks, around 95%. Regarding the importance of the variables in the construction of ANN, the presence of nodule followed by the presence of calcification were the most important variables in both ANN; Age, being in HRT (hormone replacement therapy), menopause and early menarche, the most important clinical and reproductive variables. The results found point to the high frequency of mammograms classified BI-RADS® 0 in women aged between 40 and 59 years and with a BMI ≥ 25 kg / m2, in addition it was concluded that age, clínical and radiological variables can help the Radiologist for classification of mammography reports.O câncer de mama é o segundo tipo de câncer mais frequente na população e o mais comum entre as mulheres. A mamografia permanece como o único método capaz de diminuir a mortalidade pela doença. O objetivo principal deste estudo foi avaliar os fatores preditores e a importância das variáveis clínicas para laudos mamográficos segundo a classificação BI-RADS® (Breast Imaging Reporting and Data System) em mulheres que realizaram mamografias no Município de São Luís (MA). Realizou-se estudo transversal, no período de junho de 2014 a outubro de 2015, com mulheres atendidas nas redes públicas e privadas. Foram avaliadas características demográficas e socioeconômicas, hábitos de vida, reprodutivas, bem como o laudo mamográfico segundo a classificação BI-RADS®. No primeiro artigo, para identificação dos fatores preditores da ocorrência de BI-RADS® 0, foi utilizado o teste de qui-quadrado e um modelo tipo árvore de classificação. Encontrou-se, como fatores relacionados à alta taxa de mamografias inconclusivas, estar na pré-menopausa, adesão irregular ao rastreio mamográfico, idade entre 40 a 49 anos e o IMC (índice de massa corpórea) ≥ 25 kg/m2 . No segundo artigo, o objetivo foi avaliar a importância da idade, características clínicas e reprodutivas na classificação BI-RADS® utilizando RNA (Redes Neurais Artificiais). A acurácia global da RNA construída apenas com características do laudo mamográfico, foi de 88,5% na fase treino e 78,5% na fase teste. Com a associação das variáveis clínicas houve melhora da acurácia global da rede, passando para 90% fase treino e 83,5% na fase teste. Essa melhora foi mais evidente na classificação BI-RADS® 0 (68,6%), e BI-RADS® 4 e 5 (66,7%). A acurácia em classificar pacientes BI-RADS® 1, 2 e 3 foi similar em ambas as redes, em torno de 95%. Com relação à importância das variáveis na construção da RNA, a presença de nódulo seguida da presença de calcificação, foram as variáveis mais importantes em ambas as RNA; já a idade, estar em TRH (terapia de reposição hormonal), menopausa e menarca precoce, as mais importantes variáveis clínicas e reprodutivas. Os resultados encontrados apontam para alta frequência de mamografias classificadas BI-RADS® 0 em mulheres com idade entre 40 e 59 anos e com IMC ≥ 25 kg/m2 , além disso, concluiu-se que a idade, as variáveis clínicas e achados radiológicas podem auxiliar o radiologista na classificação dos laudos mamográficos.Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2018-01-19T20:12:04Z No. of bitstreams: 1 AnaOliveira.pdf: 1588957 bytes, checksum: d37ff5eabf109c6347745756b058209a (MD5)Made available in DSpace on 2018-01-19T20:12:04Z (GMT). No. of bitstreams: 1 AnaOliveira.pdf: 1588957 bytes, checksum: d37ff5eabf109c6347745756b058209a (MD5) Previous issue date: 2017-03-31FAPEMACNPqapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM SAÚDE COLETIVA/CCBSUFMABrasilDEPARTAMENTO DE SAÚDE PÚBLICA/CCBSCâncer de mamaBI-RADS®Árvore de classificaçãoRedes neurais artificiaisBreast cancerClassification treeArtificial Neural NetworkCancerologiaRadiologia MédicaEfeito dos dados clínicos e achados radiológicos na predição de laudos mamográficosEffect of clinical and radiological findings in prediction of mammographic reportsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALAnaOliveira.pdfAnaOliveira.pdfapplication/pdf1588957http://tedebc.ufma.br:8080/bitstream/tede/2076/2/AnaOliveira.pdfd37ff5eabf109c6347745756b058209aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2076/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/20762018-01-19 17:12:04.426oai:tede2:tede/2076IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-01-19T20:12:04Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
dc.title.alternative.eng.fl_str_mv Effect of clinical and radiological findings in prediction of mammographic reports
title Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
spellingShingle Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
OLIVEIRA, Ana Gabriela Caldas
Câncer de mama
BI-RADS®
Árvore de classificação
Redes neurais artificiais
Breast cancer
Classification tree
Artificial Neural Network
Cancerologia
Radiologia Médica
title_short Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
title_full Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
title_fullStr Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
title_full_unstemmed Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
title_sort Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
author OLIVEIRA, Ana Gabriela Caldas
author_facet OLIVEIRA, Ana Gabriela Caldas
author_role author
dc.contributor.advisor1.fl_str_mv SANTOS, Alcione Miranda dos
dc.contributor.advisor1ID.fl_str_mv 641.261.104-53
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2709550775435326
dc.contributor.referee1.fl_str_mv PALACIO, Glaucia Andrade e Silva
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0413465696081991
dc.contributor.referee2.fl_str_mv MARTINS, Marília da Glória
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1876365333157244
dc.contributor.referee3.fl_str_mv THOMAZ, Erika Bárbara Abreu Fonseca
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3644251156905353
dc.contributor.referee4.fl_str_mv BATISTA, Rosângela Fernandes Lucena
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/3936205532436748
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0334634143072866
dc.contributor.author.fl_str_mv OLIVEIRA, Ana Gabriela Caldas
contributor_str_mv SANTOS, Alcione Miranda dos
PALACIO, Glaucia Andrade e Silva
MARTINS, Marília da Glória
THOMAZ, Erika Bárbara Abreu Fonseca
BATISTA, Rosângela Fernandes Lucena
dc.subject.por.fl_str_mv Câncer de mama
BI-RADS®
Árvore de classificação
Redes neurais artificiais
topic Câncer de mama
BI-RADS®
Árvore de classificação
Redes neurais artificiais
Breast cancer
Classification tree
Artificial Neural Network
Cancerologia
Radiologia Médica
dc.subject.eng.fl_str_mv Breast cancer
Classification tree
Artificial Neural Network
dc.subject.cnpq.fl_str_mv Cancerologia
Radiologia Médica
description Breast cancer is the second most common type of cancer in the population and the most common among women. Mammography remains the only method capable of reducing mortality from the disease. The main objective of this study was to evaluate the predictive factors and importance of the clínical variables for mammography reports according to the BI-RADS® (Breast Imaging Reporting and Data System) classification in women who performed mammograms in the city of São Luís (MA). A cross-sectional study was carried out between June 2014 and October 2015, with women receiving care in the public and private network. Demographic and socioeconomic characteristics, life and reproductive habits, as well as the mammographic report according to BIRADS® classification were evaluated. In the first article, the chi-square test and a classification tree type model were used to identify the predictors of BI-RADS® 0 occurrence. Factors related to the high rate of inconclusive mammograms were found to be premenopausal, irregular adhesion to mammography screening, age between 40 and 49 years, and BMI (Body Mass Index) ≥ 25 kg/m2. In the second article, the objective was to evaluate the importance of age, clinical and reproductive characteristics in BI-RADS® classification using ANN (artificial neural network). The overall accuracy of ANN constructed only with characteristics of the mammographic report was 88.5% in the training phase and 78.5% in the test. With the association of the clinical variables, there was an improvement in the overall accuracy of the network, passing to 90% training phase and 83.5% in the test. This improvement was more evident in the BI-RADS® 0 classification (68.6%) and BI-RADS® 4 and 5 (66.7%). The accuracy in classifying BI-RADS® 1, 2 and 3 patients was similar in both networks, around 95%. Regarding the importance of the variables in the construction of ANN, the presence of nodule followed by the presence of calcification were the most important variables in both ANN; Age, being in HRT (hormone replacement therapy), menopause and early menarche, the most important clinical and reproductive variables. The results found point to the high frequency of mammograms classified BI-RADS® 0 in women aged between 40 and 59 years and with a BMI ≥ 25 kg / m2, in addition it was concluded that age, clínical and radiological variables can help the Radiologist for classification of mammography reports.
publishDate 2017
dc.date.issued.fl_str_mv 2017-03-31
dc.date.accessioned.fl_str_mv 2018-01-19T20:12:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Ana Gabriela Caldas. Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos. 2017. 119 f. Tese (Doutorado em Saúde Coletiva) - Universidade Federal do Maranhão, São Luís, 2017.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/2076
identifier_str_mv OLIVEIRA, Ana Gabriela Caldas. Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos. 2017. 119 f. Tese (Doutorado em Saúde Coletiva) - Universidade Federal do Maranhão, São Luís, 2017.
url https://tedebc.ufma.br/jspui/handle/tede/tede/2076
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM SAÚDE COLETIVA/CCBS
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE SAÚDE PÚBLICA/CCBS
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/2076/2/AnaOliveira.pdf
http://tedebc.ufma.br:8080/bitstream/tede/2076/1/license.txt
bitstream.checksum.fl_str_mv d37ff5eabf109c6347745756b058209a
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926188427116544