Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/2076 |
Resumo: | Breast cancer is the second most common type of cancer in the population and the most common among women. Mammography remains the only method capable of reducing mortality from the disease. The main objective of this study was to evaluate the predictive factors and importance of the clínical variables for mammography reports according to the BI-RADS® (Breast Imaging Reporting and Data System) classification in women who performed mammograms in the city of São Luís (MA). A cross-sectional study was carried out between June 2014 and October 2015, with women receiving care in the public and private network. Demographic and socioeconomic characteristics, life and reproductive habits, as well as the mammographic report according to BIRADS® classification were evaluated. In the first article, the chi-square test and a classification tree type model were used to identify the predictors of BI-RADS® 0 occurrence. Factors related to the high rate of inconclusive mammograms were found to be premenopausal, irregular adhesion to mammography screening, age between 40 and 49 years, and BMI (Body Mass Index) ≥ 25 kg/m2. In the second article, the objective was to evaluate the importance of age, clinical and reproductive characteristics in BI-RADS® classification using ANN (artificial neural network). The overall accuracy of ANN constructed only with characteristics of the mammographic report was 88.5% in the training phase and 78.5% in the test. With the association of the clinical variables, there was an improvement in the overall accuracy of the network, passing to 90% training phase and 83.5% in the test. This improvement was more evident in the BI-RADS® 0 classification (68.6%) and BI-RADS® 4 and 5 (66.7%). The accuracy in classifying BI-RADS® 1, 2 and 3 patients was similar in both networks, around 95%. Regarding the importance of the variables in the construction of ANN, the presence of nodule followed by the presence of calcification were the most important variables in both ANN; Age, being in HRT (hormone replacement therapy), menopause and early menarche, the most important clinical and reproductive variables. The results found point to the high frequency of mammograms classified BI-RADS® 0 in women aged between 40 and 59 years and with a BMI ≥ 25 kg / m2, in addition it was concluded that age, clínical and radiological variables can help the Radiologist for classification of mammography reports. |
id |
UFMA_0e5e6095b086da2511e5575e9c37956d |
---|---|
oai_identifier_str |
oai:tede2:tede/2076 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
SANTOS, Alcione Miranda dos641.261.104-53http://lattes.cnpq.br/2709550775435326PALACIO, Glaucia Andrade e Silvahttp://lattes.cnpq.br/0413465696081991MARTINS, Marília da Glóriahttp://lattes.cnpq.br/1876365333157244THOMAZ, Erika Bárbara Abreu Fonsecahttp://lattes.cnpq.br/3644251156905353BATISTA, Rosângela Fernandes Lucenahttp://lattes.cnpq.br/3936205532436748http://lattes.cnpq.br/0334634143072866OLIVEIRA, Ana Gabriela Caldas2018-01-19T20:12:04Z2017-03-31OLIVEIRA, Ana Gabriela Caldas. Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos. 2017. 119 f. Tese (Doutorado em Saúde Coletiva) - Universidade Federal do Maranhão, São Luís, 2017.https://tedebc.ufma.br/jspui/handle/tede/tede/2076Breast cancer is the second most common type of cancer in the population and the most common among women. Mammography remains the only method capable of reducing mortality from the disease. The main objective of this study was to evaluate the predictive factors and importance of the clínical variables for mammography reports according to the BI-RADS® (Breast Imaging Reporting and Data System) classification in women who performed mammograms in the city of São Luís (MA). A cross-sectional study was carried out between June 2014 and October 2015, with women receiving care in the public and private network. Demographic and socioeconomic characteristics, life and reproductive habits, as well as the mammographic report according to BIRADS® classification were evaluated. In the first article, the chi-square test and a classification tree type model were used to identify the predictors of BI-RADS® 0 occurrence. Factors related to the high rate of inconclusive mammograms were found to be premenopausal, irregular adhesion to mammography screening, age between 40 and 49 years, and BMI (Body Mass Index) ≥ 25 kg/m2. In the second article, the objective was to evaluate the importance of age, clinical and reproductive characteristics in BI-RADS® classification using ANN (artificial neural network). The overall accuracy of ANN constructed only with characteristics of the mammographic report was 88.5% in the training phase and 78.5% in the test. With the association of the clinical variables, there was an improvement in the overall accuracy of the network, passing to 90% training phase and 83.5% in the test. This improvement was more evident in the BI-RADS® 0 classification (68.6%) and BI-RADS® 4 and 5 (66.7%). The accuracy in classifying BI-RADS® 1, 2 and 3 patients was similar in both networks, around 95%. Regarding the importance of the variables in the construction of ANN, the presence of nodule followed by the presence of calcification were the most important variables in both ANN; Age, being in HRT (hormone replacement therapy), menopause and early menarche, the most important clinical and reproductive variables. The results found point to the high frequency of mammograms classified BI-RADS® 0 in women aged between 40 and 59 years and with a BMI ≥ 25 kg / m2, in addition it was concluded that age, clínical and radiological variables can help the Radiologist for classification of mammography reports.O câncer de mama é o segundo tipo de câncer mais frequente na população e o mais comum entre as mulheres. A mamografia permanece como o único método capaz de diminuir a mortalidade pela doença. O objetivo principal deste estudo foi avaliar os fatores preditores e a importância das variáveis clínicas para laudos mamográficos segundo a classificação BI-RADS® (Breast Imaging Reporting and Data System) em mulheres que realizaram mamografias no Município de São Luís (MA). Realizou-se estudo transversal, no período de junho de 2014 a outubro de 2015, com mulheres atendidas nas redes públicas e privadas. Foram avaliadas características demográficas e socioeconômicas, hábitos de vida, reprodutivas, bem como o laudo mamográfico segundo a classificação BI-RADS®. No primeiro artigo, para identificação dos fatores preditores da ocorrência de BI-RADS® 0, foi utilizado o teste de qui-quadrado e um modelo tipo árvore de classificação. Encontrou-se, como fatores relacionados à alta taxa de mamografias inconclusivas, estar na pré-menopausa, adesão irregular ao rastreio mamográfico, idade entre 40 a 49 anos e o IMC (índice de massa corpórea) ≥ 25 kg/m2 . No segundo artigo, o objetivo foi avaliar a importância da idade, características clínicas e reprodutivas na classificação BI-RADS® utilizando RNA (Redes Neurais Artificiais). A acurácia global da RNA construída apenas com características do laudo mamográfico, foi de 88,5% na fase treino e 78,5% na fase teste. Com a associação das variáveis clínicas houve melhora da acurácia global da rede, passando para 90% fase treino e 83,5% na fase teste. Essa melhora foi mais evidente na classificação BI-RADS® 0 (68,6%), e BI-RADS® 4 e 5 (66,7%). A acurácia em classificar pacientes BI-RADS® 1, 2 e 3 foi similar em ambas as redes, em torno de 95%. Com relação à importância das variáveis na construção da RNA, a presença de nódulo seguida da presença de calcificação, foram as variáveis mais importantes em ambas as RNA; já a idade, estar em TRH (terapia de reposição hormonal), menopausa e menarca precoce, as mais importantes variáveis clínicas e reprodutivas. Os resultados encontrados apontam para alta frequência de mamografias classificadas BI-RADS® 0 em mulheres com idade entre 40 e 59 anos e com IMC ≥ 25 kg/m2 , além disso, concluiu-se que a idade, as variáveis clínicas e achados radiológicas podem auxiliar o radiologista na classificação dos laudos mamográficos.Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2018-01-19T20:12:04Z No. of bitstreams: 1 AnaOliveira.pdf: 1588957 bytes, checksum: d37ff5eabf109c6347745756b058209a (MD5)Made available in DSpace on 2018-01-19T20:12:04Z (GMT). No. of bitstreams: 1 AnaOliveira.pdf: 1588957 bytes, checksum: d37ff5eabf109c6347745756b058209a (MD5) Previous issue date: 2017-03-31FAPEMACNPqapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM SAÚDE COLETIVA/CCBSUFMABrasilDEPARTAMENTO DE SAÚDE PÚBLICA/CCBSCâncer de mamaBI-RADS®Árvore de classificaçãoRedes neurais artificiaisBreast cancerClassification treeArtificial Neural NetworkCancerologiaRadiologia MédicaEfeito dos dados clínicos e achados radiológicos na predição de laudos mamográficosEffect of clinical and radiological findings in prediction of mammographic reportsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALAnaOliveira.pdfAnaOliveira.pdfapplication/pdf1588957http://tedebc.ufma.br:8080/bitstream/tede/2076/2/AnaOliveira.pdfd37ff5eabf109c6347745756b058209aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2076/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/20762018-01-19 17:12:04.426oai:tede2:tede/2076IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-01-19T20:12:04Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos |
dc.title.alternative.eng.fl_str_mv |
Effect of clinical and radiological findings in prediction of mammographic reports |
title |
Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos |
spellingShingle |
Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos OLIVEIRA, Ana Gabriela Caldas Câncer de mama BI-RADS® Árvore de classificação Redes neurais artificiais Breast cancer Classification tree Artificial Neural Network Cancerologia Radiologia Médica |
title_short |
Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos |
title_full |
Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos |
title_fullStr |
Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos |
title_full_unstemmed |
Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos |
title_sort |
Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos |
author |
OLIVEIRA, Ana Gabriela Caldas |
author_facet |
OLIVEIRA, Ana Gabriela Caldas |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SANTOS, Alcione Miranda dos |
dc.contributor.advisor1ID.fl_str_mv |
641.261.104-53 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2709550775435326 |
dc.contributor.referee1.fl_str_mv |
PALACIO, Glaucia Andrade e Silva |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0413465696081991 |
dc.contributor.referee2.fl_str_mv |
MARTINS, Marília da Glória |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1876365333157244 |
dc.contributor.referee3.fl_str_mv |
THOMAZ, Erika Bárbara Abreu Fonseca |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/3644251156905353 |
dc.contributor.referee4.fl_str_mv |
BATISTA, Rosângela Fernandes Lucena |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/3936205532436748 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0334634143072866 |
dc.contributor.author.fl_str_mv |
OLIVEIRA, Ana Gabriela Caldas |
contributor_str_mv |
SANTOS, Alcione Miranda dos PALACIO, Glaucia Andrade e Silva MARTINS, Marília da Glória THOMAZ, Erika Bárbara Abreu Fonseca BATISTA, Rosângela Fernandes Lucena |
dc.subject.por.fl_str_mv |
Câncer de mama BI-RADS® Árvore de classificação Redes neurais artificiais |
topic |
Câncer de mama BI-RADS® Árvore de classificação Redes neurais artificiais Breast cancer Classification tree Artificial Neural Network Cancerologia Radiologia Médica |
dc.subject.eng.fl_str_mv |
Breast cancer Classification tree Artificial Neural Network |
dc.subject.cnpq.fl_str_mv |
Cancerologia Radiologia Médica |
description |
Breast cancer is the second most common type of cancer in the population and the most common among women. Mammography remains the only method capable of reducing mortality from the disease. The main objective of this study was to evaluate the predictive factors and importance of the clínical variables for mammography reports according to the BI-RADS® (Breast Imaging Reporting and Data System) classification in women who performed mammograms in the city of São Luís (MA). A cross-sectional study was carried out between June 2014 and October 2015, with women receiving care in the public and private network. Demographic and socioeconomic characteristics, life and reproductive habits, as well as the mammographic report according to BIRADS® classification were evaluated. In the first article, the chi-square test and a classification tree type model were used to identify the predictors of BI-RADS® 0 occurrence. Factors related to the high rate of inconclusive mammograms were found to be premenopausal, irregular adhesion to mammography screening, age between 40 and 49 years, and BMI (Body Mass Index) ≥ 25 kg/m2. In the second article, the objective was to evaluate the importance of age, clinical and reproductive characteristics in BI-RADS® classification using ANN (artificial neural network). The overall accuracy of ANN constructed only with characteristics of the mammographic report was 88.5% in the training phase and 78.5% in the test. With the association of the clinical variables, there was an improvement in the overall accuracy of the network, passing to 90% training phase and 83.5% in the test. This improvement was more evident in the BI-RADS® 0 classification (68.6%) and BI-RADS® 4 and 5 (66.7%). The accuracy in classifying BI-RADS® 1, 2 and 3 patients was similar in both networks, around 95%. Regarding the importance of the variables in the construction of ANN, the presence of nodule followed by the presence of calcification were the most important variables in both ANN; Age, being in HRT (hormone replacement therapy), menopause and early menarche, the most important clinical and reproductive variables. The results found point to the high frequency of mammograms classified BI-RADS® 0 in women aged between 40 and 59 years and with a BMI ≥ 25 kg / m2, in addition it was concluded that age, clínical and radiological variables can help the Radiologist for classification of mammography reports. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-03-31 |
dc.date.accessioned.fl_str_mv |
2018-01-19T20:12:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
OLIVEIRA, Ana Gabriela Caldas. Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos. 2017. 119 f. Tese (Doutorado em Saúde Coletiva) - Universidade Federal do Maranhão, São Luís, 2017. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/2076 |
identifier_str_mv |
OLIVEIRA, Ana Gabriela Caldas. Efeito dos dados clínicos e achados radiológicos na predição de laudos mamográficos. 2017. 119 f. Tese (Doutorado em Saúde Coletiva) - Universidade Federal do Maranhão, São Luís, 2017. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/2076 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM SAÚDE COLETIVA/CCBS |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE SAÚDE PÚBLICA/CCBS |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/2076/2/AnaOliveira.pdf http://tedebc.ufma.br:8080/bitstream/tede/2076/1/license.txt |
bitstream.checksum.fl_str_mv |
d37ff5eabf109c6347745756b058209a 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926188427116544 |